BE
Brandon Estrem
Author with expertise in Genome Evolution and Polyploidy in Plants
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
2
h-index:
3
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Chromosome fusion and programmed DNA elimination shape karyotypes of parasitic nematodes

James Simmons et al.Dec 23, 2023
Abstract A growing list of metazoans undergo programmed DNA elimination (PDE), where a significant amount of DNA is selectively lost from the somatic genome during development. In some nematodes, PDE leads to the removal and remodeling of the ends of all germline chromosomes. In several species, PDE also generates internal breaks that lead to sequence loss and an increased number of somatic chromosomes. The biological significance of these karyotype changes associated with PDE and the origin and evolution of nematode PDE remain largely unknown. Here, we assembled the single germline chromosome of the horse parasite Parascaris univalens and compared the karyotypes, chromosomal gene organization, and PDE features among ascarid nematodes. We show that PDE in Parascaris converts an XX/XY sex-determination system in the germline into an XX/XO system in the somatic cells. Comparisons of Ascaris, Parascaris, and Baylisascaris ascarid chromosomes suggest that PDE existed in the ancestor of these parasites, and their current distinct germline karyotypes were derived from fusion events of smaller ancestral chromosomes. The DNA breaks involved in PDE resolve these fused germline chromosomes into their pre-fusion karyotypes, leading to alterations in genome architecture and gene expression in the somatic cells. Cytological and genomic analyses further suggest that satellite DNA and the heterochromatic chromosome arms play a dynamic role in the Parascaris germline chromosome during meiosis. Overall, our results show that chromosome fusion and PDE have been harnessed in these ascarids to sculpt their karyotypes, altering the genome organization and serving specific functions in the germline and somatic cells.
0
Citation1
0
Save
0

End resection and telomere healing of DNA double-strand breaks during nematode programmed DNA elimination

Brandon Estrem et al.Jul 2, 2024
Abstract Most DNA double-strand breaks (DSBs) are harmful to genome integrity. However, some forms of DSBs are essential to biological processes, such as meiotic recombination and V(D)J recombination. DSBs are also required for programmed DNA elimination (PDE) in ciliates and nematodes. In nematodes, the DSBs are healed with telomere addition. While telomere addition sites have been well characterized, little is known regarding the DSBs that fragment nematode chromosomes. Here, we used embryos from the human and pig parasitic nematode Ascaris to characterize the DSBs. Using END-seq, we demonstrate that DSBs are introduced before mitosis, followed by extensive end resection. The resection profile is unique for each break site, and the resection generates 3′-overhangs before the addition of neotelomeres. Interestingly, telomere healing occurs much more frequently on retained DSB ends than on eliminated ends. This biased repair of the DSB ends may be due to the sequestration of the eliminated DNA into micronuclei, preventing neotelomere formation at their ends. Additional DNA breaks occur within the eliminated DNA in both Ascaris and Parascaris, ensuring chromosomal breakage and providing a fail-safe mechanism for PDE. Overall, our data indicate that telomere healing of DSBs is specific to the break sites responsible for nematode PDE.
0
Citation1
0
Save
0

End resection and telomere healing of DNA double-strand breaks during nematode programmed DNA elimination

Brandon Estrem et al.Mar 16, 2024
ABSTRACT Most DNA double-strand breaks (DSBs) are harmful to genome integrity. However, some forms of DSBs are essential to biological processes, such as meiotic recombination and V(D)J recombination. DSBs are also required for programmed DNA elimination (PDE) in ciliates and nematodes. In nematodes, the DSBs are healed with telomere addition. While telomere addition sites have been well-characterized, little is known regarding the DSBs that fragment nematode chromosomes. Here, we used embryos from the nematode Ascaris to study the timing of PDE breaks and examine the DSBs and their end processing. Using END-seq, we characterize the DSB ends and demonstrate that DNA breaks are introduced before mitosis, followed by extensive end resection. The resection profile is unique for each break site, and the resection generates 3’ overhangs before the addition of telomeres. Interestingly, telomere healing occurs much more frequently on retained DSB ends than on eliminated ends. This biased repair of the DSB ends in Ascaris may be due to the sequestration of the eliminated DNA into micronuclei, preventing their ends from telomere healing. Additional DNA breaks occur within the eliminated DNA in both Ascaris and Parascaris , ensuring chromosomal breakage and providing a fail-safe mechanism for nematode PDE.