Abstract Mosquitoes vector harmful pathogens that infect millions of people every year, and developing approaches to effectively control mosquitoes is a topic of great interest. However, the success of many control measures is highly dependent upon ecological, physiological, and life history traits of the mosquito species. The behavior of mosquitoes and their potential to vector pathogens can also be impacted by these traits. One trait of interest is mosquito body mass, which depends upon many factors associated with the environment in which juvenile mosquitoes develop. Our experiments examined the impact of larval density on the body mass of Aedes aegypti mosquitoes, which are important vectors of dengue, Zika, yellow fever, and other pathogens. To investigate the interactions between the larval environment and mosquito body mass, we built a discrete time mathematical model that incorporates body mass, larval density, and food availability and fit the model to our experimental data. We considered three categories of model complexity informed by data, and selected the best model within each category using Akaike’s Information Criterion. We found that the larval environment is an important determinant of the body mass of mosquitoes upon emergence. Furthermore, we found that larval density has greater impact on body mass of adults at emergence than on development time, and that inclusion of density dependence in the survival of female aquatic stages in models is important. We discuss the implications of our results for the control of Aedes mosquitoes and on their potential to spread disease. Author summary In this work we examined how the environment in which young mosquitoes develop affects their adult body size as measured by adult body mass. Adult size has potential impacts on mosquito behavior and the ability of mosquitoes to transmit disease. We used a combination of experimental work and mathematical modeling to determine important factors affecting adult mosquito body size. In our model, we incorporated potentially interacting aspects of the mosquito life cycle and traits that affect mosquito growth as juveniles. These aspects include body mass, density of the population, and level of available resource. We compared different models to determine the one that best describes the data. As mass at emergence is linked to the success of adult mosquitoes to produce offspring and to their ability transmit pathogens, we discuss how important influences on development and survival of young mosquitoes affect mosquito control and disease spread.