PT
Péter Tóth
Author with expertise in Mitochondrial Dynamics and Reactive Oxygen Species Regulation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(100% Open Access)
Cited by:
2,284
h-index:
40
/
i10-index:
70
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer

Jalees Rehman et al.Feb 9, 2012
Mitochondria exist in dynamic networks that undergo fusion and fission. Mitochondrial fusion and fission are mediated by several GTPases in the outer mitochondrial membrane, notably mitofusin-2 (Mfn-2), which promotes fusion, and dynamin-related protein (Drp-1), which promotes fission. We report that human lung cancer cell lines exhibit an imbalance of Drp-1/Mfn-2 expression, which promotes a state of mitochondrial fission. Lung tumor tissue samples from patients demonstrated a similar increase in Drp-1 and decrease in Mfn-2 when compared to adjacent healthy lung. Complementary approaches to restore mitochondrial network formation in lung cancer cells by overexpression of Mfn-2, Drp-1 inhibition, or Drp-1 knockdown resulted in a marked reduction of cancer cell proliferation and an increase in spontaneous apoptosis. The number of cancer cells in S phase decreased from 32.4 ± 0.6 to 6.4 ± 0.3% with Drp-1 inhibition (P< 0.001). In a xenotransplantation model, Mfn-2 gene therapy or Drp-1 inhibition could regress tumor growth. The tumor volume decreased from 205.6 ± 59 to 70.6 ± 15 mm3 (P<0.05) with Mfn-2 overexpression and from 186.0 ± 19 to 87.0 ± 6 mm3 (P<0.01) with therapeutic Drp-1 inhibition. Impaired fusion and enhanced fission contribute fundamentally to the proliferation/apoptosis imbalance in cancer and constitute promising novel therapeutic targets.—Rehman, J., Zhang, H. J., Toth, P. T., Zhang, Y., Marsboom, G., Hong, Z., Salgia, R., Husain, A. N., Wietholt, C., Archer, S. L. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J. 26, 2175-2186 (2012). www.fasebj.org
0
Citation509
0
Save
0

Dynamin-Related Protein 1–Mediated Mitochondrial Mitotic Fission Permits Hyperproliferation of Vascular Smooth Muscle Cells and Offers a Novel Therapeutic Target in Pulmonary Hypertension

Glenn Marsboom et al.Apr 18, 2012
Rationale: Pulmonary arterial hypertension (PAH) is a lethal syndrome characterized by pulmonary vascular obstruction caused, in part, by pulmonary artery smooth muscle cell (PASMC) hyperproliferation. Mitochondrial fragmentation and normoxic activation of hypoxia-inducible factor-1α (HIF-1α) have been observed in PAH PASMCs; however, their relationship and relevance to the development of PAH are unknown. Dynamin-related protein-1 (DRP1) is a GTPase that, when activated by kinases that phosphorylate serine 616, causes mitochondrial fission. It is, however, unknown whether mitochondrial fission is a prerequisite for proliferation. Objective: We hypothesize that DRP1 activation is responsible for increased mitochondrial fission in PAH PASMCs and that DRP1 inhibition may slow proliferation and have therapeutic potential. Methods and Results: Experiments were conducted using human control and PAH lungs (n=5) and PASMCs in culture. Parallel experiments were performed in rat lung sections and PASMCs and in rodent PAH models induced by the HIF-1α activator, cobalt, chronic hypoxia, and monocrotaline. HIF-1α activation in human PAH leads to mitochondrial fission by cyclin B1/CDK1–dependent phosphorylation of DRP1 at serine 616. In normal PASMCs, HIF-1α activation by CoCl 2 or desferrioxamine causes DRP1-mediated fission. HIF-1α inhibition reduces DRP1 activation, prevents fission, and reduces PASMC proliferation. Both the DRP1 inhibitor Mdivi-1 and siDRP1 prevent mitotic fission and arrest PAH PASMCs at the G2/M interphase. Mdivi-1 is antiproliferative in human PAH PASMCs and in rodent models. Mdivi-1 improves exercise capacity, right ventricular function, and hemodynamics in experimental PAH. Conclusions: DRP-1–mediated mitotic fission is a cell-cycle checkpoint that can be therapeutically targeted in hyperproliferative disorders such as PAH.
0

Epigenetic Attenuation of Mitochondrial Superoxide Dismutase 2 in Pulmonary Arterial Hypertension

Stephen Archer et al.Jun 8, 2010
Background— Excessive proliferation and impaired apoptosis of pulmonary artery (PA) smooth muscle cells (PASMCs) contribute to vascular obstruction in patients and fawn-hooded rats (FHRs) with PA hypertension (PAH). Expression and activity of mitochondrial superoxide dismutase-2 (SOD2), the major generator of H 2 O 2 , is known to be reduced in PAH; however, the mechanism and therapeutic relevance of this are unknown. Methods and Results— SOD2 expression in PASMCs is decreased in PAH patients and FHRs with PAH. FHR PASMCs have higher proliferation and lower apoptosis rates than Sprague-Dawley rat PASMCs. Moreover, FHR PASMCs have hyperpolarized mitochondria, low H 2 O 2 production, and reduced cytoplasmic and mitochondrial redox state. Administration of SOD2 small interfering RNA to normal PASMCs recapitulates the FHR PAH phenotype, hyperpolarizing mitochondria, decreasing H 2 O 2 , and inhibiting caspase activity. Conversely, SOD2 overexpression in FHR PASMCs or therapy with the SOD-mimetic metalloporphyrin Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP) reverses the hyperproliferative PAH phenotype. Importantly, SOD-mimetic therapy regresses PAH in vivo. Investigation of the SOD2 gene revealed no mutation, suggesting a possible epigenetic dysregulation. Genomic bisulfite sequencing demonstrates selective hypermethylation of a CpG island in an enhancer region of intron 2 and another in the promoter. Differential methylation occurs selectively in PAs versus aortic SMCs and is reversed by the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine, restoring both SOD2 expression and the ratio of proliferation to apoptosis. Expression of the enzymes that mediate gene methylation, DNA methyltransferases 1 and 3B, is upregulated in FHR lungs. Conclusions— Tissue-specific, epigenetic SOD2 deficiency initiates and sustains a heritable form of PAH by impairing redox signaling and creating a proliferative, apoptosis-resistant PASMC. SOD augmentation regresses experimental PAH. The discovery of an epigenetic component to PAH may offer new therapeutic targets.
0

The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle

Lin Piao et al.Nov 30, 2009
Right ventricular hypertrophy (RVH) and RV failure contribute to morbidity and mortality in pulmonary arterial hypertension (PAH). The cause of RV dysfunction and the feasibility of therapeutically targeting the RV are uncertain. We hypothesized that RV dysfunction and electrical remodeling in RVH result, in part, from a glycolytic shift in the myocyte, caused by activation of pyruvate dehydrogenase kinase (PDK). We studied two complementary rat models: RVH + PAH (induced by monocrotaline) and RVH + without PAH (induced by pulmonary artery banding (PAB)). Monocrotaline RVH reduced RV O2-consumption and enhanced glycolysis. RV 2-fluoro-2-deoxy-glucose uptake, Glut-1 expression, and pyruvate dehydrogenase phosphorylation increased in monocrotaline RVH. The RV monophasic action potential duration and QTc interval were prolonged due to decreased expression of repolarizing voltage-gated K+ channels (Kv1.5, Kv4.2). In the RV working heart model, the PDK inhibitor, dichloroacetate, acutely increased glucose oxidation and cardiac work in monocrotaline RVH. Chronic dichloroacetate therapy improved RV repolarization and RV function in vivo and in the RV Langendorff model. In PAB-induced RVH, a similar reduction in cardiac output and glycolytic shift occurred and it too improved with dichloroacetate. In PAB-RVH, the benefit of dichloroacetate on cardiac output was approximately 1/3 that in monocrotaline RVH. The larger effects in monocrotaline RVH likely reflect dichloroacetate’s dual metabolic benefits in that model: regression of vascular disease and direct effects on the RV. Reduction in RV function and electrical remodeling in two models of RVH relevant to human disease (PAH and pulmonic stenosis) result, in part, from a PDK-mediated glycolytic shift in the RV. PDK inhibition partially restores RV function and regresses RVH by restoring RV repolarization and enhancing glucose oxidation. Recognition that a PDK-mediated metabolic shift contributes to contractile and ionic dysfunction in RVH offers insight into the pathophysiology and treatment of RVH.
0

Chronic oral application of a periodontal pathogen results in brain inflammation, neurodegeneration and amyloid beta production in wild type mice

Vladimir Ilievski et al.Oct 3, 2018
Background The results from cross sectional and longitudinal studies show that periodontitis is closely associated with cognitive impairment (CI) and Alzhemer’s Disease (AD). Further, studies using animal model of periodontitis and human post-mortem brain tissues from subjects with AD strongly suggest that a gram-negative periodontal pathogen, Porphyromonas gingivalis (Pg) and/or its product gingipain is/are translocated to the brain. However, neuropathology resulting from Pg oral application is not known. In this work, we tested the hypothesis that repeated exposure of wild type C57BL/6 mice to orally administered Pg results in neuroinflammation, neurodegeneration, microgliosis, astrogliosis and formation of intra- and extracellular amyloid plaque and neurofibrillary tangles (NFTs) which are pathognomonic signs of AD. Methods Experimental chronic periodontitis was induced in ten wild type 8-week old C57BL/6 WT mice by repeated oral application (MWF/week) of Pg/gingipain for 22 weeks (experimental group). Another 10 wild type 8-week old C57BL/6 mice received vehicle alone (control group) MWF per week for 22 weeks. Brain tissues were collected and the presence of Pg/gingipain was determined by immunofluorescence (IF) microscopy, confocal microscopy, and quantitative PCR (qPCR). The hippocampi were examined for the signs of neuropathology related to AD: TNFα, IL1β, and IL6 expression (neuroinflammation), NeuN and Fluoro Jade C staining (neurodegeneration) and amyloid beta1-42 (Aβ42) production and phosphorylation of tau protein at Ser396 were assessed by IF and confocal microscopy. Further, gene expression of amyloid precursor protein (APP), beta-site APP cleaving enzyme 1 (BACE1), a disintegrin and metalloproteinase domain-containing protein10 (ADAM10) for α-secretase and presenilin1 (PSEN1) for ɣ-secretase, and NeuN (rbFox3) were determined by RT-qPCR. Microgliosis and astrogliosis were also determined by IF microscopy. Results Pg/gingipain was detected in the hippocampi of mice in the experimental group by immunohistochemistry, confocal microscopy, and qPCR confirming the translocation of orally applied Pg to the brain. Pg/gingipain was localized intra-nuclearly and peri-nuclearly in microglia (Iba1+), astrocytes (GFAP+), neurons (NeuN+) and was evident extracellularly. Significantly greater levels of expression of IL6, TNFα and IL1β were evident in experimental as compared to control group (p<0.01, p<0.00001, p<0.00001 respectively). In addition, microgliosis and astrogliosis were evident in the experimental but not in control group (p <0.01, p<0.0001 respectively). Neurodegeneration was evident in the experimental group based on a fewer number of intact neuronal cells assessed by NeuN positivity and rbFOX3 gene expression, and there was a greater number of degenerating neurons in the hippocampi of experimental mice assessed by Fluoro Jade C positivity. APP and BACE1 gene expression were increased in experimental group compared with control group (p<0.05, p<0.001 respectively). PSEN1 gene expression was higher in experimental than control group but the difference was not statistically significant (p = 0.07). ADAM10 gene expression was significantly decreased in experimental group compared with control group (p<0.01). Extracellular Aβ42 was detected in the parenchyma in the experimental but not in the control group (p< 0.00001). Finally, phospho-Tau (Ser396) protein was detected and NFTs were evident in experimental but not in the control group (p<0.00001). Conclusions This study is the first to show neurodegeneration and the formation of extracellular Aβ42 in young adult WT mice after repeated oral application of Pg. The neuropathological features observed in this study strongly suggest that low grade chronic periodontal pathogen infection can result in the development of neuropathology that is consistent with that of AD.
0
Citation263
0
Save
0

Endothelial heterogeneity across distinct vascular beds during homeostasis and inflammation

Ankit Jambusaria et al.Jan 16, 2020
Blood vessels are lined by endothelial cells engaged in distinct organ-specific functions but little is known about their characteristic gene expression profiles. RNA-Sequencing of the brain, lung, and heart endothelial translatome identified specific pathways, transporters and cell-surface markers expressed in the endothelium of each organ, which can be visualized at http://www.rehmanlab.org/ribo. We found that endothelial cells express genes typically found in the surrounding tissues such as synaptic vesicle genes in the brain endothelium and cardiac contractile genes in the heart endothelium. Complementary analysis of endothelial single cell RNA-Seq data identified the molecular signatures shared across the endothelial translatome and single cell transcriptomes. The tissue-specific heterogeneity of the endothelium is maintained during systemic in vivo inflammatory injury as evidenced by the distinct responses to inflammatory stimulation. Our study defines endothelial heterogeneity and plasticity and provides a molecular framework to understand organ-specific vascular disease mechanisms and therapeutic targeting of individual vascular beds.Blood vessels supply nutrients, oxygen and other key molecules to all of the organs in the body. Cells lining the blood vessels, called endothelial cells, regulate which molecules pass from the blood to the organs they supply. For example, brain endothelial cells prevent toxic molecules from getting into the brain, and lung endothelial cells allow immune cells into the lungs to fight off bacteria or viruses.Determining which genes are switched on in the endothelial cells of major organs might allow scientists to determine what endothelial cells do in the brain, heart, and lung, and how they differ; or help scientists deliver drugs to a particular organ. If endothelial cells from different organs switch on different groups of genes, each of these groups of genes can be thought of as a ‘genetic signature’ that identifies endothelial cells from a specific organ.Now, Jambusaria et al. show that brain, heart, and lung endothelial cells have distinct genetic signatures. The experiments used mice that had been genetically modified to have tags on their endothelial cells. These tags made it possible to isolate RNA – a molecule similar to DNA that contains the information about which genes are active – from endothelial cells without separating the cells from their tissue of origin. Next, RNA from endothelial cells in the heart, brain and lung was sequenced and analyzed.The results show that each endothelial cell type has a distinct genetic signature under normal conditions and infection-like conditions. Unexpectedly, the experiments also showed that genes that were thought to only be switched on in the cells of specific tissues are also on in the endothelial cells lining the blood vessels of the tissue. For example, genes switched on in brain cells are also active in brain endothelial cells, and genes allowing heart muscle cells to pump are also on in the endothelial cells of the heart blood vessels.The endothelial cell genetic signatures identified by Jambusaria et al. can be used as “postal codes” to target drugs to a specific organ via the endothelial cells that feed it. It might also be possible to use these genetic signatures to build organ-specific blood vessels from stem cells in the laboratory. Future work will try to answer why endothelial cells serving the heart and brain use genes from these organs.
0

Mitochondrial Respiration Regulates Adipogenic Differentiation of Human Mesenchymal Stem Cells

Yanmin Zhang et al.Oct 18, 2013
Human mesenchymal stem cells (MSCs) are adult multipotent stem cells which can be isolated from bone marrow, adipose tissue as well as other tissues and have the capacity to differentiate into a variety of mesenchymal cell types such as adipocytes, osteoblasts and chondrocytes. Differentiation of stem cells into mature cell types is guided by growth factors and hormones, but recent studies suggest that metabolic shifts occur during differentiation and can modulate the differentiation process. We therefore investigated mitochondrial biogenesis, mitochondrial respiration and the mitochondrial membrane potential during adipogenic differentiation of human MSCs. In addition, we inhibited mitochondrial function to assess its effects on adipogenic differentiation. Our data show that mitochondrial biogenesis and oxygen consumption increase markedly during adipogenic differentiation, and that reducing mitochondrial respiration by hypoxia or by inhibition of the mitochondrial electron transport chain significantly suppresses adipogenic differentiation. Furthermore, we used a novel approach to suppress mitochondrial activity using a specific siRNA-based knockdown of the mitochondrial transcription factor A (TFAM), which also resulted in an inhibition of adipogenic differentiation. Taken together, our data demonstrates that increased mitochondrial activity is a prerequisite for MSC differentiation into adipocytes. These findings suggest that metabolic modulation of adult stem cells can maintain stem cell pluripotency or direct adult stem cell differentiation.
0
Citation227
0
Save
1

Impaired Barrier Integrity of the Skeletal Muscle Vascular Endothelium Drives Progression of Cancer Cachexia

Young-Mee Kim et al.Dec 14, 2022
Abstract Cancer patients experience cachexia, which is characterized by extensive skeletal muscle wasting that worsens the quality of life and increases mortality. Currently, there are no approved treatments that can effectively counteract cancer cachexia. Vascular endothelial cells (ECs) are essential for maintaining tissue perfusion, nutrient supply, and preventing inappropriate transmigration of immune cells into the tissue. However, little is known about the role of the muscle vasculature in cancer cachexia. We hypothesized that endothelial dysfunction in the skeletal muscle mediates cancer cachexia. Using transgenic pancreatic ductal adenocarcinoma (PDAC) mice and a tissue clearing and high-resolution 3D-tissue imaging approach, we found that the loss of skeletal muscle vascular density precedes the loss of muscle mass. Importantly, we show that cancer cachexia patients exhibit significantly decreased muscle vascular density and severe muscle atrophy when compared to non-cancer patients. Unbiased single cell transcriptomic analyses of the muscle endothelium unveiled a unique EC population present in cachexia muscles. Increased circulating Activin-A suppresses the expression of the transcriptional co-activator PGC1α in the muscle endothelium, thus disrupting junctional integrity in the vasculature and increasing vascular leakage. Conversely, restoration of endothelial-specific PGC1α prevented the decreased vascular density and muscle loss observed in tumor-bearing mice. Our study suggests that EC-PGC1α is essential for maintaining the integrity of the skeletal muscle vascular barrier and that restoring muscle endothelial function could be a valuable therapeutic approach to prevent or reverse cancer cachexia.
1
Citation3
0
Save
2

Pink1-mediated mitophagy in the endothelium releases proteins encoded by mitochondrial DNA and activates neutrophil responses

Priyanka Gajwani et al.Aug 7, 2022
Abstract Given their ancient evolutionary origins, eukaryotic mitochondria possess multiple vestiges of their prokaryotic ancestors. One such factor is the N-terminal formylation of proteins encoded by mitochondrial DNA. N-formylated proteins are also released by bacteria and trigger activation of immune cells such as neutrophils. Growing evidence indicate that circulating levels of mitochondrial formyl proteins are elevated in the serum of patients with excessive inflammatory responses and trigger neutrophil activation like their bacterial counterparts. However, the cellular source of these proteins, and the mechanism by which they are released into the circulation is not known. In this study, we have identified vascular endothelial cells as a source of mitophagy induced release of formyl proteins in response to inflammatory mediators in vitro. Mechanistically, endothelial mitophagy required activation of the Pink1 pathway. Using liposomal delivery of sgRNA targeting Pink1 in mice expressing endothelial-specific Cas9, we developed a mouse model in which Pink1 is specifically depleted in the endothelium. Deletion of endothelial Pink1 was remarkably protective in endotoxin-induced lung inflammation, resulting in reduced neutrophil infiltration and significantly reduced death in mice. We thus propose that endothelial cells upregulate pro-inflammatory mitophagy in response to inflammation, leading to release of mitochondrial formyl peptides and detrimental neutrophil recruitment into the lung.
2
Citation1
0
Save
Load More