PC
Peter Cameron
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
371
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

NmeCas9 is an intrinsically high-fidelity genome editing platform

Nadia Amrani et al.Aug 4, 2017
ABSTRACT Background The development of CRISPR genome editing has transformed biomedical research. Most applications reported thus far rely upon the Cas9 protein from Streptococcus pyogenes SF370 (SpyCas9). With many RNA guides, wild-type SpyCas9 can induce significant levels of unintended mutations at near-cognate sites, necessitating substantial efforts toward the development of strategies to minimize off-target activity. Although the genome-editing potential of thousands of other Cas9 orthologs remains largely untapped, it is not known how many will require similarly extensive engineering to achieve single-site accuracy within large (e.g. mammalian) genomes. In addition to its off-targeting propensity, SpyCas9 is encoded by a relatively large (~4.2 kb) open reading frame, limiting its utility in applications that require size-restricted delivery strategies such as adeno-associated virus vectors. In contrast, some genome-editing-validated Cas9 orthologs (e.g. from Staphylococcus aureus, Campylobacter jejuni, Geobacillus stearothermophilus and Neisseria meningitidis ) are considerably smaller and therefore better suited for viral delivery. Results Here we show that wild-type NmeCas9, when programmed with guide sequences of natural length (24 nucleotides), exhibits a nearly complete absence of unintended editing in human cells, even when targeting sites that are prone to off-target activity with wildtype SpyCas9. We also validate at least six variant protospacer adjacent motifs (PAMs), in addition to the preferred consensus PAM (5’-N 4 GATT-3’), for NmeCas9 genome editing in human cells. Conclusions Our results show that NmeCas9 is a naturally high-fidelity genome editing enzyme and suggest that additional Cas9 orthologs may prove to exhibit similarly high accuracy, even without extensive engineering.
0
Citation4
0
Save
4

Design of highly functional genome editors by modeling the universe of CRISPR-Cas sequences

Jeffrey Ruffolo et al.Apr 22, 2024
Gene editing has the potential to solve fundamental challenges in agriculture, biotechnology, and human health. CRISPR-based gene editors derived from microbes, while powerful, often show significant functional tradeoffs when ported into non-native environments, such as human cells. Artificial intelligence (AI) enabled design provides a powerful alternative with potential to bypass evolutionary constraints and generate editors with optimal properties. Here, using large language models (LLMs) trained on biological diversity at scale, we demonstrate the first successful precision editing of the human genome with a programmable gene editor designed with AI. To achieve this goal, we curated a dataset of over one million CRISPR operons through systematic mining of 26 terabases of assembled genomes and meta-genomes. We demonstrate the capacity of our models by generating 4.8x the number of protein clusters across CRISPR-Cas families found in nature and tailoring single-guide RNA sequences for Cas9-like effector proteins. Several of the generated gene editors show comparable or improved activity and specificity relative to SpCas9, the prototypical gene editing effector, while being 400 mutations away in sequence. Finally, we demonstrate an AI-generated gene editor, denoted as OpenCRISPR-1, exhibits compatibility with base editing. We release OpenCRISPR-1 publicly to facilitate broad, ethical usage across research and commercial applications.
4
Citation2
8
Save