RS
Reiner Siebert
Author with expertise in Lymphoid Neoplasms
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
18
(61% Open Access)
Cited by:
3,347
h-index:
58
/
i10-index:
144
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes

Bjoern Chapuy et al.Apr 27, 2018
Diffuse large B cell lymphoma (DLBCL), the most common lymphoid malignancy in adults, is a clinically and genetically heterogeneous disease that is further classified into transcriptionally defined activated B cell (ABC) and germinal center B cell (GCB) subtypes. We carried out a comprehensive genetic analysis of 304 primary DLBCLs and identified low-frequency alterations, captured recurrent mutations, somatic copy number alterations, and structural variants, and defined coordinate signatures in patients with available outcome data. We integrated these genetic drivers using consensus clustering and identified five robust DLBCL subsets, including a previously unrecognized group of low-risk ABC-DLBCLs of extrafollicular/marginal zone origin; two distinct subsets of GCB-DLBCLs with different outcomes and targetable alterations; and an ABC/GCB-independent group with biallelic inactivation of TP53, CDKN2A loss, and associated genomic instability. The genetic features of the newly characterized subsets, their mutational signatures, and the temporal ordering of identified alterations provide new insights into DLBCL pathogenesis. The coordinate genetic signatures also predict outcome independent of the clinical International Prognostic Index and suggest new combination treatment strategies. More broadly, our results provide a roadmap for an actionable DLBCL classification.
0

Genomic basis for RNA alterations in cancer

Claudia Calabrese et al.Feb 5, 2020
Abstract Transcript alterations often result from somatic changes in cancer genomes 1 . Various forms of RNA alterations have been described in cancer, including overexpression 2 , altered splicing 3 and gene fusions 4 ; however, it is difficult to attribute these to underlying genomic changes owing to heterogeneity among patients and tumour types, and the relatively small cohorts of patients for whom samples have been analysed by both transcriptome and whole-genome sequencing. Here we present, to our knowledge, the most comprehensive catalogue of cancer-associated gene alterations to date, obtained by characterizing tumour transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) 5 . Using matched whole-genome sequencing data, we associated several categories of RNA alterations with germline and somatic DNA alterations, and identified probable genetic mechanisms. Somatic copy-number alterations were the major drivers of variations in total gene and allele-specific expression. We identified 649 associations of somatic single-nucleotide variants with gene expression in cis , of which 68.4% involved associations with flanking non-coding regions of the gene. We found 1,900 splicing alterations associated with somatic mutations, including the formation of exons within introns in proximity to Alu elements. In addition, 82% of gene fusions were associated with structural variants, including 75 of a new class, termed ‘bridged’ fusions, in which a third genomic location bridges two genes. We observed transcriptomic alteration signatures that differ between cancer types and have associations with variations in DNA mutational signatures. This compendium of RNA alterations in the genomic context provides a rich resource for identifying genes and mechanisms that are functionally implicated in cancer.
0
Citation322
0
Save
0

Quantitative comparison of DNA methylation assays for biomarker development and clinical applications

Christoph Bock et al.Jun 27, 2016
DNA methylation patterns are altered in numerous diseases and often correlate with clinically relevant information such as disease subtypes, prognosis and drug response. With suitable assays and after validation in large cohorts, such associations can be exploited for clinical diagnostics and personalized treatment decisions. Here we describe the results of a community-wide benchmarking study comparing the performance of all widely used methods for DNA methylation analysis that are compatible with routine clinical use. We shipped 32 reference samples to 18 laboratories in seven different countries. Researchers in those laboratories collectively contributed 21 locus-specific assays for an average of 27 predefined genomic regions, as well as six global assays. We evaluated assay sensitivity on low-input samples and assessed the assays' ability to discriminate between cell types. Good agreement was observed across all tested methods, with amplicon bisulfite sequencing and bisulfite pyrosequencing showing the best all-round performance. Our technology comparison can inform the selection, optimization and use of DNA methylation assays in large-scale validation studies, biomarker development and clinical diagnostics.
0
Citation308
0
Save
1

DNA methylation profiles of bronchoscopic biopsies for the diagnosis of lung cancer

Torsten Goldmann et al.Feb 17, 2021
Abstract Background Lung cancer is the leading cause of cancer-related death in most western countries in both, males and females, accounting for roughly 20–25% of all cancer deaths. For choosing the most appropriate therapy regimen a definite diagnosis is a prerequisite. However, histological characterization of bronchoscopic biopsies particularly with low tumor cell content is often challenging. Therefore, this study aims at (a) determining the value of DNA methylation analysis applied to specimens obtained by bronchoscopic biopsy for the diagnosis of lung cancer and (b) at comparing aberrantly CpG loci identified in bronchoscopic biopsy with those identified by analyzing surgical specimens. Results We report the HumanMethylation450-based DNA methylation analysis of paired samples of bronchoscopic biopsy specimens either from the tumor side or from the contralateral tumor-free bronchus in 37 patients with definite lung cancer diagnosis and 18 patients with suspicious diagnosis. A differential DNA methylation analysis between both biopsy sites of patients with definite diagnosis identified 1303 loci. Even those samples were separated by the set of 1303 loci in which histopathological analysis could not unambiguously define the dignity. Further differential DNA methylation analyses distinguished between SCLC and NSCLC. We validated our results in an independent cohort of 40 primary lung cancers obtained by open surgical resection and their corresponding controls from the same patient as well as in publically available DNA methylation data from a TCGA cohort which could also be classified with high accuracy. Conclusions Considering that the prognosis correlates with tumor stage at time of diagnosis, early detection of lung cancer is vital and DNA methylation analysis might add valuable information to reliably characterize lung cancer even in histologically ambiguous sample material.
1
Citation10
0
Save
8

Integrative analysis of genomic variants reveals new associations of candidate haploinsufficient genes with congenital heart disease

Enrique Audain et al.Jun 25, 2020
Abstract Congenital Heart Disease (CHD) affects approximately 7-9 children per 1000 live births. Numerous genetic studies have established a role for rare genomic variants at the copy number variation (CNV) and single nucleotide variant level. In particular, the role of de novo mutations (DNM) has been highlighted in syndromic and non-syndromic CHD. To identify novel haploinsufficient CHD disease genes we performed an integrative analysis of CNVs and DNMs identified in probands with CHD including cases with sporadic thoracic aortic aneurysm (TAA). We assembled CNV data from 7,958 cases and 14,082 controls and performed a gene-wise analysis of the burden of rare genomic deletions in cases versus controls. In addition, we performed mutation rate testing for DNMs identified in 2,489 parent-offspring trios. Our combined analysis revealed 21 genes which were significantly affected by rare genomic deletions and/or constrained non-synonymous de novo mutations in probands. Fourteen of these genes have previously been associated with CHD while the remaining genes ( FEZ1, MYO16, ARID1B, NALCN, WAC, KDM5B and WHSC1 ) have only been associated in singletons and small cases series, or show new associations with CHD. In addition, a systems level analysis revealed shared contribution of CNV deletions and DNMs in CHD probands, affecting protein-protein interaction networks involved in Notch signaling pathway, heart morphogenesis, DNA repair and cilia/centrosome function. Taken together, this approach highlights the importance of re-analyzing existing datasets to strengthen disease association and identify novel disease genes.
8
Citation4
0
Save
Load More