MB
Michael Bevan
Author with expertise in Genome Evolution and Polyploidy in Plants
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
29
(66% Open Access)
Cited by:
20,143
h-index:
74
/
i10-index:
138
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Analysis of the bread wheat genome using whole-genome shotgun sequencing

Rachel Brenchley et al.Nov 1, 2012
Bread wheat (Triticum aestivum) is a globally important crop, accounting for 20 per cent of the calories consumed by humans. Major efforts are underway worldwide to increase wheat production by extending genetic diversity and analysing key traits, and genomic resources can accelerate progress. But so far the very large size and polyploid complexity of the bread wheat genome have been substantial barriers to genome analysis. Here we report the sequencing of its large, 17-gigabase-pair, hexaploid genome using 454 pyrosequencing, and comparison of this with the sequences of diploid ancestral and progenitor genomes. We identified between 94,000 and 96,000 genes, and assigned two-thirds to the three component genomes (A, B and D) of hexaploid wheat. High-resolution synteny maps identified many small disruptions to conserved gene order. We show that the hexaploid genome is highly dynamic, with significant loss of gene family members on polyploidization and domestication, and an abundance of gene fragments. Several classes of genes involved in energy harvesting, metabolism and growth are among expanded gene families that could be associated with crop productivity. Our analyses, coupled with the identification of extensive genetic variation, provide a resource for accelerating gene discovery and improving this major crop. Sequencing of the hexaploid bread wheat genome shows that it is highly dynamic, with significant loss of gene family members on polyploidization and domestication, and an abundance of gene fragments. Two groups in this issue report the compilation and analysis of the genome sequences of major cereal crops — bread wheat and barley — providing important resources for future crop improvement. Bread wheat accounts for one-fifth of the calories consumed by humankind. It has a very large and complex hexaploid genome of 17 Gigabases. Michael Bevan and colleagues have analysed the genome using 454 pyrosequencing and compared it with diploid ancestral and progenitor genomes. The authors discovered significant loss of gene family members upon polyploidization and domestication, and expansion of gene classes that may be associated with crop productivity. Barley is one of the earliest domesticated plant crops. Although diploid, it has a very large genome of 5.1 Gigabases. Nils Stein and colleagues describe a physical map anchored to a high-resolution genetic map, on top of which they have overlaid a deep whole-genome shotgun assembly, cDNA and RNA-seq data to provide the first in-depth genome-wide survey of the barley genome.
0
Citation1,059
0
Save
0

Multiple wheat genomes reveal global variation in modern breeding

Sean Walkowiak et al.Nov 25, 2020
Abstract Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat ( Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome 1 , and the lack of genome-assembly data for multiple wheat lines 2,3 . Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses 4,5 . We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm1 6 , a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars.
0
Citation632
0
Save
0

Towards functional characterisation of the members of theR2R3‐MYBgene family fromArabidopsis thaliana

Harald Kranz et al.Oct 1, 1998
Summary Transcription factors containing a conserved DNA‐binding domain similar to that of the proto‐oncogene c‐myb have been identified in nearly all eukaryotes. MYB‐related proteins from plants generally contain two related helix‐turn‐helix motifs, the R2 and R3 repeats. It was estimated that Arabidopsis thaliana contains more than 100 R2R3‐MYB genes. The few cases where functional data are available suggest an important role of these genes in the regulation of secondary metabolism, the control of cell shape, disease resistance, and hormone responses. To determine the full regulatory potential of this large family of regulatory genes, a systematic search for the function of all genes of this family was initiated . Sequence data for more than 90 different A. thaliana R2R3‐MYB genes have been obtained. Sequence comparison revealed conserved amino acid motifs shared by subgroups of R2R3‐MYB genes in addition to the characteristic DNA‐binding domain. No significant clustering of the genes was detected, although they are not uniformly distributed throughout the A. thaliana genome. R2R3‐MYB gene expression levels were determined under more than 20 different growth conditions including hormone treatment, infection with pathogens and various stress conditions. MYB genes are specifically expressed in different tissues and physiological conditions, indicating the potential for involvement in various regulatory processes. The sequence and expression data together with the map positions of nearly all MYB genes in A. thaliana provide a substantial basis for further studies of this important group of transcription factors.
0
Citation568
0
Save
0

Genome sequence of the progenitor of the wheat D genome Aegilops tauschii

Ming‐Cheng Luo et al.Nov 1, 2017
A combination of advanced sequencing and mapping techniques is used to produce a reference genome of Aegilops tauschii, progenitor of the wheat D genome, providing a valuable resource for comparative genetic studies. Sequencing the genomes of crops plants provides useful resources for crop improvement and breeding. Jan Dvořák, Katrien Devos, Steven Salzberg and colleagues report a reference genome for Aegilops tauschii, the diploid progenitor of the D genome of hexaploid wheat. They use a combination of ordered-clone genome sequencing, whole-genome shotgun sequencing and BioNano optical genome mapping to assemble this large and highly repetitive genome. This provides a useful resource for comparative genomics studies of wheat. Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat1 (Triticum aestivum, genomes AABBDD) and an important genetic resource for wheat2,3,4. The large size and highly repetitive nature of the Ae. tauschii genome has until now precluded the development of a reference-quality genome sequence5. Here we use an array of advanced technologies, including ordered-clone genome sequencing, whole-genome shotgun sequencing, and BioNano optical genome mapping, to generate a reference-quality genome sequence for Ae. tauschii ssp. strangulata accession AL8/78, which is closely related to the wheat D genome. We show that compared to other sequenced plant genomes, including a much larger conifer genome, the Ae. tauschii genome contains unprecedented amounts of very similar repeated sequences. Our genome comparisons reveal that the Ae. tauschii genome has a greater number of dispersed duplicated genes than other sequenced genomes and its chromosomes have been structurally evolving an order of magnitude faster than those of other grass genomes. The decay of colinearity with other grass genomes correlates with recombination rates along chromosomes. We propose that the vast amounts of very similar repeated sequences cause frequent errors in recombination and lead to gene duplications and structural chromosome changes that drive fast genome evolution.
0
Citation559
0
Save
Load More