SS
Sarah Sandaradura
Author with expertise in Molecular Mechanisms of Muscle Regeneration and Atrophy
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
1,152
h-index:
22
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

RASA1Mutations and Associated Phenotypes in 68 Families with Capillary Malformation-Arteriovenous Malformation

Nicole Revençu et al.Aug 29, 2013
Capillary malformation–arteriovenous malformation (CM–AVM) is an autosomal-dominant disorder, caused by heterozygous RASA1 mutations, and manifesting multifocal CMs and high risk for fast-flow lesions. A limited number of patients have been reported, raising the question of the phenotypic borders. We identified new patients with a clinical diagnosis of CM–AVM, and patients with overlapping phenotypes. RASA1 was screened in 261 index patients with: CM–AVM (n = 100), common CM(s) (port-wine stain; n = 100), Sturge–Weber syndrome (n = 37), or isolated AVM(s) (n = 24). Fifty-eight distinct RASA1 mutations (43 novel) were identified in 68 index patients with CM–AVM and none in patients with other phenotypes. A novel clinical feature was identified: cutaneous zones of numerous small white pale halos with a central red spot. An additional question addressed in this study was the "second-hit" hypothesis as a pathophysiological mechanism for CM–AVM. One tissue from a patient with a germline RASA1 mutation was available. The analysis of the tissue showed loss of the wild-type RASA1 allele. In conclusion, mutations in RASA1 underscore the specific CM–AVM phenotype and the clinical diagnosis is based on identifying the characteristic CMs. The high incidence of fast-flow lesions warrants careful clinical and radiologic examination, and regular follow-up.
0
Citation248
0
Save
0

Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy

Michaela Yuen et al.Sep 23, 2014
Nemaline myopathy (NM) is a genetic muscle disorder characterized by muscle dysfunction and electron-dense protein accumulations (nemaline bodies) in myofibers. Pathogenic mutations have been described in 9 genes to date, but the genetic basis remains unknown in many cases. Here, using an approach that combined whole-exome sequencing (WES) and Sanger sequencing, we identified homozygous or compound heterozygous variants in LMOD3 in 21 patients from 14 families with severe, usually lethal, NM. LMOD3 encodes leiomodin-3 (LMOD3), a 65-kDa protein expressed in skeletal and cardiac muscle. LMOD3 was expressed from early stages of muscle differentiation; localized to actin thin filaments, with enrichment near the pointed ends; and had strong actin filament-nucleating activity. Loss of LMOD3 in patient muscle resulted in shortening and disorganization of thin filaments. Knockdown of lmod3 in zebrafish replicated NM-associated functional and pathological phenotypes. Together, these findings indicate that mutations in the gene encoding LMOD3 underlie congenital myopathy and demonstrate that LMOD3 is essential for the organization of sarcomeric thin filaments in skeletal muscle.
0
Citation184
0
Save
0

Improving genetic diagnosis in Mendelian disease with transcriptome sequencing

Beryl Cummings et al.Sep 8, 2016
Abstract Exome and whole-genome sequencing are becoming increasingly routine approaches in Mendelian disease diagnosis. Despite their success, the current diagnostic rate for genomic analyses across a variety of rare diseases is approximately 25-50%. Here, we explore the utility of transcriptome sequencing (RNA-seq) as a complementary diagnostic tool in a cohort of 50 patients with genetically undiagnosed rare muscle disorders. We describe an integrated approach to analyze patient muscle RNA-seq, leveraging an analysis framework focused on the detection of transcript-level changes that are unique to the patient compared to over 180 control skeletal muscle samples. We demonstrate the power of RNA-seq to validate candidate splice-disrupting mutations and to identify splice-altering variants in both exonic and deep intronic regions, yielding an overall diagnosis rate of 35%. We also report the discovery of a highly recurrent de novo intronic mutation in COL6A1 that results in a dominantly acting splice-gain event, disrupting the critical glycine repeat motif of the triple helical domain. We identify this pathogenic variant in a total of 27 genetically unsolved patients in an external collagen VI-like dystrophy cohort, thus explaining approximately 25% of patients clinically suggestive of collagen VI dystrophy in whom prior genetic analysis is negative. Overall, this study represents a large systematic application of transcriptome sequencing to rare disease diagnosis and highlights its utility for the detection and interpretation of variants missed by current standard diagnostic approaches. One Sentence Summary Transcriptome sequencing improves the diagnostic rate for Mendelian disease in patients for whom genetic analysis has not returned a diagnosis.
0
Citation53
0
Save