FM
Fernando Meyer
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
1,060
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Critical Assessment of Metagenome Interpretation—a benchmark of metagenomics software

Alexander Sczyrba et al.Oct 2, 2017
The Critical Assessment of Metagenome Interpretation (CAMI) community initiative presents results from its first challenge, a rigorous benchmarking of software for metagenome assembly, binning and taxonomic profiling. Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions.
0
Citation767
0
Save
0

Critical Assessment of Metagenome Interpretation – a benchmark of computational metagenomics software

Alexander Sczyrba et al.Jan 9, 2017
Abstract In metagenome analysis, computational methods for assembly, taxonomic profiling and binning are key components facilitating downstream biological data interpretation. However, a lack of consensus about benchmarking datasets and evaluation metrics complicates proper performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on datasets of unprecedented complexity and realism. Benchmark metagenomes were generated from ~700 newly sequenced microorganisms and ~600 novel viruses and plasmids, including genomes with varying degrees of relatedness to each other and to publicly available ones and representing common experimental setups. Across all datasets, assembly and genome binning programs performed well for species represented by individual genomes, while performance was substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below the family level. Parameter settings substantially impacted performances, underscoring the importance of program reproducibility. While highlighting current challenges in computational metagenomics, the CAMI results provide a roadmap for software selection to answer specific research questions.
0
Citation50
0
Save
82

Critical Assessment of Metagenome Interpretation - the second round of challenges

Fernando Meyer et al.Jul 12, 2021
Abstract Evaluating metagenomic software is key for optimizing metagenome interpretation and focus of the community-driven initiative for the Critical Assessment of Metagenome Interpretation (CAMI). In its second challenge, CAMI engaged the community to assess their methods on realistic and complex metagenomic datasets with long and short reads, created from ∼1,700 novel and known microbial genomes, as well as ∼600 novel plasmids and viruses. Altogether 5,002 results by 76 program versions were analyzed, representing a 22x increase in results. Substantial improvements were seen in metagenome assembly, some due to using long-read data. The presence of related strains still was challenging for assembly and genome binning, as was assembly quality for the latter. Taxon profilers demonstrated a marked maturation, with taxon profilers and binners excelling at higher bacterial taxonomic ranks, but underperforming for viruses and archaea. Assessment of clinical pathogen detection techniques revealed a need to improve reproducibility. Analysis of program runtimes and memory usage identified highly efficient programs, including some top performers with other metrics. The CAMI II results identify current challenges, but also guide researchers in selecting methods for specific analyses.
82
Citation17
0
Save
31

Tutorial: Assessing metagenomics software with the CAMI benchmarking toolkit

Fernando Meyer et al.Aug 12, 2020
Abstract Computational methods are key in microbiome research, and obtaining a quantitative and unbiased performance estimate is important for method developers and applied researchers. For meaningful comparisons between methods, to identify best practices, common use cases, and to reduce overhead in benchmarking, it is necessary to have standardized data sets, procedures, and metrics for evaluation. In this tutorial, we describe emerging standards in computational metaomics benchmarking derived and agreed upon by a larger community of researchers. Specifically, we outline recent efforts by the Critical Assessment of Metagenome Interpretation (CAMI) initiative, which supplies method developers and applied researchers with exhaustive quantitative data about software performance in realistic scenarios and organizes community-driven benchmarking challenges. We explain the most relevant evaluation metrics to assess metagenome assembly, binning, and profiling results, and provide step-by-step instructions on how to generate them. The instructions use simulated mouse gut metagenome data released in preparation for the second round of CAMI challenges and showcase the use of a repository of tool results for CAMI data sets. This tutorial will serve as a reference to the community and facilitate informative and reproducible benchmarking in microbiome research.
31
Citation3
0
Save
0

Assessing computational predictions of antimicrobial resistance phenotypes from microbial genomes

Kewei Hu et al.Feb 1, 2024
Abstract The advent of rapid whole-genome sequencing has created new opportunities for computational prediction of antimicrobial resistance (AMR) phenotypes from genomic data. Both rule-based and machine learning (ML) approaches have been explored for this task, but systematic benchmarking is still needed. Here, we evaluated four state-of-the-art ML methods (Kover, PhenotypeSeeker, Seq2Geno2Pheno, and Aytan-Aktug), an ML baseline, and the rule-based ResFinder by training and testing each of them across 78 species–antibiotic datasets, using a rigorous benchmarking workflow that integrates three evaluation approaches, each paired with three distinct sample splitting methods. Our analysis revealed considerable variation in the performance across techniques and datasets. Whereas ML methods generally excelled for closely related strains, ResFinder excelled for handling divergent genomes. Overall, Kover most frequently ranked top among the ML approaches, followed by PhenotypeSeeker and Seq2Geno2Pheno. AMR phenotypes for antibiotic classes such as macrolides and sulfonamides were predicted with the highest accuracies. The quality of predictions varied substantially across species–antibiotic combinations, particularly for beta-lactams; across species, resistance phenotyping of the beta-lactams compound, aztreonam, amox-clav, cefoxitin, ceftazidime, and piperacillin/tazobactam, alongside tetracyclines demonstrated more variable performance than the other benchmarked antibiotics. By organism, C. jejuni and E. faecium phenotypes were more robustly predicted than those of Escherichia coli , Staphylococcus aureus , Salmonella enterica , Neisseria gonorrhoeae , Klebsiella pneumoniae , Pseudomonas aeruginosa , Acinetobacter baumannii , Streptococcus pneumoniae , and Mycobacterium tuberculos is . In addition, our study provides software recommendations for each species–antibiotic combination. It furthermore highlights the need for optimization for robust clinical applications, particularly for strains that diverge substantially from those used for training.
0

Assessing taxonomic metagenome profilers with OPAL

Fernando Meyer et al.Jul 19, 2018
Taxonomic metagenome profilers predict the presence and relative abundance of microorganisms from shotgun sequence samples of DNA isolated directly from a microbial community. Over the past years, there has been an explosive growth of software and algorithms for this task, resulting in a need for more systematic comparisons of these methods based on relevant performance criteria. Here, we present OPAL, a software package implementing commonly used performance metrics, including those of the first challenge of the Initiative for the Critical Assessment of Metagenome Interpretation (CAMI), together with convenient visualizations. In addition, OPAL implements diversity metrics from microbial ecology, as well as run time and memory efficiency measurements. By allowing users to customize the relative importance of metrics, OPAL facilitates in-depth performance comparisons, as well as the development of new methods and data analysis workflows. To demonstrate the application, we compared seven profilers on benchmark datasets of the first and second CAMI challenges using all metrics and performance measurements available in OPAL. The software is implemented in Python 3 and available under the Apache 2.0 license on GitHub (https://github.com/CAMI-challenge/OPAL).