JF
Jeff Froula
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
1,962
h-index:
14
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Critical Assessment of Metagenome Interpretation—a benchmark of metagenomics software

Alexander Sczyrba et al.Oct 2, 2017
The Critical Assessment of Metagenome Interpretation (CAMI) community initiative presents results from its first challenge, a rigorous benchmarking of software for metagenome assembly, binning and taxonomic profiling. Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions.
0
Citation767
0
Save
0

The Epigenomic Landscape of Prokaryotes

Matthew Blow et al.Feb 12, 2016
DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities of 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active 'orphan' MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.
0
Citation319
0
Save
0

Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation

Janine Kamke et al.Oct 19, 2016
Enteric fermentation by farmed ruminant animals is a major source of methane and constitutes the second largest anthropogenic contributor to global warming. Reducing methane emissions from ruminants is needed to ensure sustainable animal production in the future. Methane yield varies naturally in sheep and is a heritable trait that can be used to select animals that yield less methane per unit of feed eaten. We previously demonstrated elevated expression of hydrogenotrophic methanogenesis pathway genes of methanogenic archaea in the rumens of high methane yield (HMY) sheep compared to their low methane yield (LMY) counterparts. Methane production in the rumen is strongly connected to microbial hydrogen production through fermentation processes. In this study, we investigate the contribution that rumen bacteria make to methane yield phenotypes in sheep.Using deep sequence metagenome and metatranscriptome datasets in combination with 16S rRNA gene amplicon sequencing from HMY and LMY sheep, we show enrichment of lactate-producing Sharpea spp. in LMY sheep bacterial communities. Increased gene and transcript abundances for sugar import and utilisation and production of lactate, propionate and butyrate were also observed in LMY animals. Sharpea azabuensis and Megasphaera spp. act as important drivers of lactate production and utilisation according to phylogenetic analysis and read mappings.Our findings show that the rumen microbiome in LMY animals supports a rapid heterofermentative growth, leading to lactate production. We postulate that lactate is subsequently metabolised mainly to butyrate in LMY animals, producing 2 mol of hydrogen and 0.5 mol of methane per mol hexose, which represents 24 % less than the 0.66 mol of methane formed from the 2.66 mol of hydrogen produced if hexose fermentation was directly to acetate and butyrate. These findings are consistent with the theory that a smaller rumen size with a higher turnover rate, where rapid heterofermentative growth would be an advantage, results in lower hydrogen production and lower methane formation. Together with previous methanogen gene expression data, this builds a strong concept of how animal traits and microbial communities shape the methane phenotype in sheep.
0
Citation253
0
Save
0

Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations

Matthew Bendall et al.Jan 8, 2016
Abstract Multiple models describe the formation and evolution of distinct microbial phylogenetic groups. These evolutionary models make different predictions regarding how adaptive alleles spread through populations and how genetic diversity is maintained. Processes predicted by competing evolutionary models, for example, genome-wide selective sweeps vs gene-specific sweeps, could be captured in natural populations using time-series metagenomics if the approach were applied over a sufficiently long time frame. Direct observations of either process would help resolve how distinct microbial groups evolve. Here, from a 9-year metagenomic study of a freshwater lake (2005–2013), we explore changes in single-nucleotide polymorphism (SNP) frequencies and patterns of gene gain and loss in 30 bacterial populations. SNP analyses revealed substantial genetic heterogeneity within these populations, although the degree of heterogeneity varied by &gt;1000-fold among populations. SNP allele frequencies also changed dramatically over time within some populations. Interestingly, nearly all SNP variants were slowly purged over several years from one population of green sulfur bacteria, while at the same time multiple genes either swept through or were lost from this population. These patterns were consistent with a genome-wide selective sweep in progress, a process predicted by the ‘ecotype model’ of speciation but not previously observed in nature. In contrast, other populations contained large, SNP-free genomic regions that appear to have swept independently through the populations prior to the study without purging diversity elsewhere in the genome. Evidence for both genome-wide and gene-specific sweeps suggests that different models of bacterial speciation may apply to different populations coexisting in the same environment.
0
Citation245
0
Save
0

Critical Assessment of Metagenome Interpretation – a benchmark of computational metagenomics software

Alexander Sczyrba et al.Jan 9, 2017
Abstract In metagenome analysis, computational methods for assembly, taxonomic profiling and binning are key components facilitating downstream biological data interpretation. However, a lack of consensus about benchmarking datasets and evaluation metrics complicates proper performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on datasets of unprecedented complexity and realism. Benchmark metagenomes were generated from ~700 newly sequenced microorganisms and ~600 novel viruses and plasmids, including genomes with varying degrees of relatedness to each other and to publicly available ones and representing common experimental setups. Across all datasets, assembly and genome binning programs performed well for species represented by individual genomes, while performance was substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below the family level. Parameter settings substantially impacted performances, underscoring the importance of program reproducibility. While highlighting current challenges in computational metagenomics, the CAMI results provide a roadmap for software selection to answer specific research questions.
0
Citation50
0
Save