Purpose: Sedentary behavior has become a public health pandemic and has been associated with a variety of comorbidities including cardiovascular disease, type 2 diabetes, and some cancers. Previous studies have also shown that excessive amount of sedentary behavior is associated with all-cause mortality. However, no studies investigated whether patterns of sedentary and active time accumulation are associated with mortality independently of total sedentary and total active times. This study addresses this question by i) comparing several analytical ways to quantify patterns of both sedentary and active time accumulation through metrics of fragmentation of objectively-measured physical activity and ii) exploring the association of these metrics with all-cause mortality in a nationally representative US sample of elderly adults. Methods: The accelerometry data of 3400 participants aged 50 to 84 in the National Health and Nutrition Examination Survey 2003-2006 cohorts were analyzed. Ten fragmentation metrics were calculated to quantify the duration of sedentary and active bouts: average bout duration, Gini index, average hazard, between-state transition probability, and the parameter of power law distribution. The association of these fragmentation metrics with all-cause mortality followed through December 31, 2011 was assessed with survey-weighted Cox proportional hazard models. Results: In models adjusted for age, sex, race/ethnicity, education, body mass index, common comorbidities, and total sedentary/active time, four fragmentation metrics were associated with lower mortality risk: average active bout duration (HR=0.72 for 1SD increase, 95% CI = 0.59-0.88), Gini index for active bouts (HR = 0.75, 95% CI = 0.64-0.86), the parameter of power law distribution for sedentary bouts (HR = 0.75, 95% CI = 0.63-0.90), and sedentary-to-active transition probability (HR = 0.77, 95% CI = 0.61-0.96), and four fragmentation metrics were associated with higher mortality risk: the active-to-sedentary transition probability (HR = 1.40, 95% CI=1.23-1.58), the parameter of power law distribution for active bouts (HR = 1.33, 95% CI = 1.16-1.52), average hazard for durations of active bouts (HR = 1.32, 95% CI = 1.18-1.48), and average sedentary bout duration (HR =1.07, 95% CI = 1.01-1.13). After sensitivity analysis, average sedentary bout duration and sedentary-to-active transition probability became insignificant. Conclusion: Longer average duration of active bouts, a lower probability of transitioning from active to sedentary behavior, and a higher normalized variability of active bout durations were strongly negatively associated with all-cause mortality independently of total active time. A larger proportion of longer sedentary bouts were positively associated with all-cause mortality independently of total sedentary time. The results also suggested a nonlinear association of average active bout duration with mortality that corresponded to the largest risk increase in subjects with average active bout duration less than 3 minutes.