EB
Eric Bridgeford
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(70% Open Access)
Cited by:
293
h-index:
15
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Small-World Propensity and Weighted Brain Networks

Sarah Muldoon et al.Feb 25, 2016
Quantitative descriptions of network structure can provide fundamental insights into the function of interconnected complex systems. Small-world structure, diagnosed by high local clustering yet short average path length between any two nodes, promotes information flow in coupled systems, a key function that can differ across conditions or between groups. However, current techniques to quantify small-worldness are density dependent and neglect important features such as the strength of network connections, limiting their application in real-world systems. Here, we address both limitations with a novel metric called the Small-World Propensity (SWP). In its binary instantiation, the SWP provides an unbiased assessment of small-world structure in networks of varying densities. We extend this concept to the case of weighted brain networks by developing (i) a standardized procedure for generating weighted small-world networks, (ii) a weighted extension of the SWP, and (iii) a method for mapping observed brain network data onto the theoretical model. In applying these techniques to compare real-world brain networks, we uncover the surprising fact that the canonical biological small-world network, the C. elegans neuronal network, has strikingly low SWP. These metrics, models, and maps form a coherent toolbox for the assessment and comparison of architectural properties in brain networks.
0

Eliminating accidental deviations to minimize generalization error and maximize replicability: applications in connectomics and genomics

Eric Bridgeford et al.Oct 13, 2019
Abstract Replicability, the ability to replicate scientific findings, is a prerequisite for scientific discovery and clinical utility. Troublingly, we are in the midst of a replicability crisis. A key to replicability is that multiple measurements of the same item (e.g., experimental sample or clinical participant) under fixed experimental constraints are relatively similar to one another. Thus, statistics that quantify the relative contributions of accidental deviations—such as measurement error—as compared to systematic deviations—such as individual differences—are critical. We demonstrate that existing replicability statistics, such as intra-class correlation coefficient and fingerprinting, fail to adequately differentiate between accidental and systematic deviations in very simple settings. We therefore propose a novel statistic, discriminability , which quantifies the degree to which an individual’s samples are relatively similar to one another, without restricting the data to be univariate, Gaussian, or even Euclidean. Using this statistic, we introduce the possibility of optimizing experimental design via increasing discriminability and prove that optimizing discriminability improves performance bounds in subsequent inference tasks. In extensive simulated and real datasets (focusing on brain imaging and demonstrating on genomics), only optimizing data discriminability improves performance on all subsequent inference tasks for each dataset. We therefore suggest that designing experiments and analyses to optimize discriminability may be a crucial step in solving the replicability crisis, and more generally, mitigating accidental measurement error. Author Summary In recent decades, the size and complexity of data has grown exponentially. Unfortunately, the increased scale of modern datasets brings many new challenges. At present, we are in the midst of a replicability crisis, in which scientific discoveries fail to replicate to new datasets. Difficulties in the measurement procedure and measurement processing pipelines coupled with the influx of complex high-resolution measurements, we believe, are at the core of the replicability crisis. If measurements themselves are not replicable, what hope can we have that we will be able to use the measurements for replicable scientific findings? We introduce the “discriminability” statistic, which quantifies how discriminable measurements are from one another, without limitations on the structure of the underlying measurements. We prove that discriminable strategies tend to be strategies which provide better accuracy on downstream scientific questions. We demonstrate the utility of discriminability over competing approaches in this context on two disparate datasets from both neuroimaging and genomics. Together, we believe these results suggest the value of designing experimental protocols and analysis procedures which optimize the discriminability.
1

When no answer is better than a wrong answer: a causal perspective on batch effects

Eric Bridgeford et al.Sep 6, 2021
Abstract Batch effects, undesirable sources of variability across multiple experiments, present significant challenges for scientific and clinical discoveries. Batch effects can (i) produce spurious signals and/or (ii) obscure genuine signals, contributing to the ongoing reproducibility crisis. Because batch effects are typically modeled as classical statistical effects, they often cannot differentiate between sources of variability, which leads them to erroneously conclude batch effects are present (or not). We formalize batch effects as causal effects, and introduce algorithms leveraging causal machinery, to address these concerns. Simulations illustrate that when non-causal methods provide the wrong answer, our methods either produce more accurate answers or “no answer”, meaning they assert the data are an inadequate to confidently conclude on the presence of a batch effect. Applying our causal methods to a 27 neuroimaging datasets yields qualitatively similar results: in situations where it is unclear whether batch effects are present, non-causal methods confidently identify (or fail to identify) batch effects, whereas our causal methods assert that it is unclear whether there are batch effects or not. This work therefore provides a causal framework for understanding the potential capabilities and limitations of analysis of multi-site data.
6

A low-resource reliable pipeline to democratize multi-modal connectome estimation and analysis

Jaewon Chung et al.Nov 3, 2021
Abstract Connectomics—the study of brain networks—provides a unique and valuable opportunity to study the brain. Research in human connectomics, leveraging functional and diffusion Magnetic Resonance Imaging (MRI), is a resource-intensive practice. Typical analysis routines require significant computational capabilities and subject matter expertise. Establishing a pipeline that is low-resource, easy to use, and off-the-shelf (can be applied across multifarious datasets without parameter tuning to reliably estimate plausible connectomes), would significantly lower the barrier to entry into connectomics, thereby democratizing the field by empowering a more diverse and inclusive community of connectomists. We therefore introduce ‘MRI to Graphs’ ( m2g ). To illustrate its properties, we used m2g to process MRI data from 35 different studies (≈ 6,000 scans) from 15 sites without any manual intervention or parameter tuning. Every single scan yielded an estimated connectome that adhered to established properties, such as stronger ipsilateral than contralateral connections in structural connectomes, and stronger homotopic than heterotopic correlations in functional connectomes. Moreover, the connectomes estimated by m2g are more similar within individuals than between them, suggesting that m2g preserves biological variability. m2g is portable, and can run on a single CPU with 16 GB of RAM in less than a couple hours, or be deployed on the cloud using its docker container. All code is available on https://github.com/neurodata/m2g and documentation is available on docs.neurodata.io/m2g.
14

Generative network modeling reveals quantitative definitions of bilateral symmetry exhibited by a whole insect brain connectome

Benjamin Pedigo et al.Nov 28, 2022
Abstract Comparing connectomes can help explain how neural connectivity is related to genetics, disease, development, learning, and behavior. However, making statistical inferences about the significance and nature of differences between two networks is an open problem, and such analysis has not been extensively applied to nanoscale connectomes. Here, we investigate this problem via a case study on the bilateral symmetry of a larval Drosophila brain connectome. We translate notions of “bilateral symmetry” to generative models of the network structure of the left and right hemispheres, allowing us to test and refine our understanding of symmetry. We find significant differences in connection probabilities both across the entire left and right networks and between specific cell types. By rescaling connection probabilities or removing certain edges based on weight, we also present adjusted definitions of bilateral symmetry exhibited by this connectome. This work shows how statistical inferences from networks can inform the study of connectomes, facilitating future comparisons of neural structures.
5

The Heritability of Human Connectomes: a Causal Modeling Analysis

Jaewon Chung et al.Apr 3, 2023
The heritability of human connectomes is crucial for understanding the influence of genetic and environmental factors on variability in connectomes, and their implications for behavior and disease. However, current methods for studying heritability assume an associational rather than a causal effect, or rely on strong distributional assumptions that may not be appropriate for complex, high-dimensional connectomes. To address these limitations, we propose two solutions: first, we formalize heritability as a problem in causal inference, and identify measured covariates to control for unmeasured confounding, allowing us to make causal claims. Second, we leverage statistical models that capture the underlying structure and dependence within connectomes, enabling us to define different notions of connectome heritability by removing common structures such as scaling of edge weights between connectomes. We then develop a non-parametric test to detect whether causal heritability exists after taking principled steps to adjust for these commonalities, and apply it to diffusion connectomes estimated from the Human Connectome Project. Our findings reveal that heritability can still be detected even after adjusting for potential confounding like neuroanatomy, age, and sex. However, once we address for rescaling between connectomes, our causal tests are no longer significant. These results suggest that previous conclusions on connectome heritability may be driven by rescaling factors. Together, our manuscript highlights the importance for future works to continue to develop data-driven heritability models which faithfully reflect potential confounders and network structure.
0

Standardizing Human Brain Parcellations

Ross Lawrence et al.Nov 25, 2019
Using brain atlases to localize regions of interest is a required for making neuroscientifically valid statistical inferences. These atlases, represented in volumetric or surface coordinate spaces, can describe brain topology from a variety of perspectives. Although many human brain atlases have circulated the field over the past fifty years, limited effort has been devoted to their standardization and specification. The purpose of standardization and specification is to ensure consistency and transparency with respect to orientation, resolution, labeling scheme, file storage format, and coordinate space designation. Consequently, researchers are often confronted with limited knowledge about a given atlas’s organization, which make analytic comparisons more difficult. To fill this gap, we consolidate an extensive selection of popular human brain atlases into a single, curated open-source library, where they are stored following a standardized protocol with accompanying metadata. We propose that this protocol serves as the basis for storing future atlases. To demonstrate the utility of storing and standardizing these atlases following a common protocol, we conduct an experiment using data from the Healthy Brain Network whereby we quantify the statistical dependence of each atlas label on several key phenotypic variables. The repository containing the atlases, the specification, as well as relevant transformation functions is available at
0

A High-Throughput Pipeline Identifies Robust Connectomes But Troublesome Variability

Gregory Kiar et al.Sep 14, 2017
Modern scientific discovery depends on collecting large heterogeneous datasets with many sources of variability, and applying domain-specific pipelines from which one can draw insight or clinical utility. For example, macroscale connectomics studies require complex pipelines to process raw functional or diffusion data and estimate connectomes. Individual studies tend to customize pipelines to their needs, raising concerns about their reproducibility, and adding to a longer list of factors that may differ across studies (including sampling, experimental design, and data acquisition protocols), resulting in failures to replicate. Mitigating these issues requires multi-study datasets and the development of pipelines that can be applied across them. We developed NeuroData's MRI to Graphs (NDMG) pipeline using several functional and diffusion studies, including the Consortium for Reliability and Reproducibility, to estimate connectomes. Without any manual intervention or parameter tuning, NDMG ran on 25 different studies (~6,000 scans) from 15 sites, with each scan resulting in a biologically plausible connectome (as assessed by multiple quality assurance metrics at each processing stage). For each study, the connectomes from NDMG are more similar within than across individuals, indicating that NDMG is preserving biological variability. Moreover, the connectomes exhibit near perfect consistency for certain connectional properties across every scan, individual, study, site, and modality; these include stronger ipsilateral than contralateral connections and stronger homotopic than heterotopic connections. Yet, the magnitude of the differences varied across individuals and studies - much more so when pooling data across sites, even after controlling for study, site, and basic demographic variables (i.e., age, sex, and ethnicity). This indicates that other experimental variables (possibly those not measured or reported) are contributing to this variability, which if not accounted for can limit the value of aggregate datasets, as well as expectations regarding the accuracy of findings and likelihood of replication. We, therefore, provide a set of principles to guide the development of pipelines capable of pooling data across studies while maintaining biological variability and minimizing measurement error. This open science approach provides us with an opportunity to understand and eventually mitigate spurious results for both past and future studies.