JH
Josselin Houenou
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(62% Open Access)
Cited by:
1,118
h-index:
42
/
i10-index:
84
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group

Derrek Hibar et al.May 2, 2017
Despite decades of research, the pathophysiology of bipolar disorder (BD) is still not well understood. Structural brain differences have been associated with BD, but results from neuroimaging studies have been inconsistent. To address this, we performed the largest study to date of cortical gray matter thickness and surface area measures from brain magnetic resonance imaging scans of 6503 individuals including 1837 unrelated adults with BD and 2582 unrelated healthy controls for group differences while also examining the effects of commonly prescribed medications, age of illness onset, history of psychosis, mood state, age and sex differences on cortical regions. In BD, cortical gray matter was thinner in frontal, temporal and parietal regions of both brain hemispheres. BD had the strongest effects on left pars opercularis (Cohen’s d=−0.293; P=1.71 × 10−21), left fusiform gyrus (d=−0.288; P=8.25 × 10−21) and left rostral middle frontal cortex (d=−0.276; P=2.99 × 10−19). Longer duration of illness (after accounting for age at the time of scanning) was associated with reduced cortical thickness in frontal, medial parietal and occipital regions. We found that several commonly prescribed medications, including lithium, antiepileptic and antipsychotic treatment showed significant associations with cortical thickness and surface area, even after accounting for patients who received multiple medications. We found evidence of reduced cortical surface area associated with a history of psychosis but no associations with mood state at the time of scanning. Our analysis revealed previously undetected associations and provides an extensive analysis of potential confounding variables in neuroimaging studies of BD.
0

Subcortical volumetric abnormalities in bipolar disorder

Derrek Hibar et al.Feb 9, 2016
Considerable uncertainty exists about the defining brain changes associated with bipolar disorder (BD). Understanding and quantifying the sources of uncertainty can help generate novel clinical hypotheses about etiology and assist in the development of biomarkers for indexing disease progression and prognosis. Here we were interested in quantifying case–control differences in intracranial volume (ICV) and each of eight subcortical brain measures: nucleus accumbens, amygdala, caudate, hippocampus, globus pallidus, putamen, thalamus, lateral ventricles. In a large study of 1710 BD patients and 2594 healthy controls, we found consistent volumetric reductions in BD patients for mean hippocampus (Cohen’s d=−0.232; P=3.50 × 10−7) and thalamus (d=−0.148; P=4.27 × 10−3) and enlarged lateral ventricles (d=−0.260; P=3.93 × 10−5) in patients. No significant effect of age at illness onset was detected. Stratifying patients based on clinical subtype (BD type I or type II) revealed that BDI patients had significantly larger lateral ventricles and smaller hippocampus and amygdala than controls. However, when comparing BDI and BDII patients directly, we did not detect any significant differences in brain volume. This likely represents similar etiology between BD subtype classifications. Exploratory analyses revealed significantly larger thalamic volumes in patients taking lithium compared with patients not taking lithium. We detected no significant differences between BDII patients and controls in the largest such comparison to date. Findings in this study should be interpreted with caution and with careful consideration of the limitations inherent to meta-analyzed neuroimaging comparisons.
0
Citation446
0
Save
152

Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset?

Kurt Schilling et al.Oct 8, 2020
Abstract White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process.
38

Population modeling with machine learning can enhance measures of mental health

Kamalaker Dadi et al.Aug 25, 2020
Abstract Background Biological aging is revealed by physical measures, e . g ., DNA probes or brain scans. Instead, individual differences in mental function are explained by psychological constructs, e.g., intelligence or neuroticism. These constructs are typically assessed by tailored neuropsychological tests that build on expert judgement and require careful interpretation. Could machine learning on large samples from the general population be used to build proxy measures of these constructs that do not require human intervention? Results Here, we built proxy measures by applying machine learning on multimodal MR images and rich sociodemographic information from the largest biomedical cohort to date: the UK Biobank. Objective model comparisons revealed that all proxies captured the target constructs and were as useful, and sometimes more useful than the original measures for characterizing real-world health behavior (sleep, exercise, tobacco, alcohol consumption). We observed this complementarity of proxy measures and original measures when modeling from brain signals or sociodemographic data, capturing multiple health-related constructs. Conclusions Population modeling with machine learning can derive measures of mental health from brain signals and questionnaire data, which may complement or even substitute for psychometric assessments in clinical populations. Key Points We applied machine learning on more than 10.000 individuals from the general population to define empirical approximations of health-related psychological measures that do not require human judgment. We found that machine-learning enriched the given psychological measures via approximation from brain and sociodemographic data: Resulting proxy measures related as well or better to real-world health behavior than the original measures. Model comparisons showed that sociodemographic information contributed most to characterizing psychological traits beyond aging.
38
Citation3
0
Save
1

Decoding activity in Broca’s area predicts the occurrence of auditory hallucinations across subjects

Thomas Fovet et al.May 21, 2021
ABSTRACT BACKGROUND Functional magnetic resonance imaging (fMRI) capture aims at detecting auditory-verbal hallucinations (AVHs) from continuously recorded brain activity. Establishing efficient capture methods with low computational cost that easily generalize between patients remains a key objective in precision psychiatry. To address this issue, we developed a novel automatized fMRI-capture procedure for AVHs in schizophrenia patients. METHODS We used a previously validated, but labor-intensive, personalized fMRI-capture method to train a linear classifier using machine-learning techniques. We benchmarked the performances of this classifier on 2320 AVH periods vs . resting-state periods obtained from schizophrenia patients with frequent symptoms (n=23). We characterized patterns of BOLD activity that were predictive of AVH both within- and between-subjects. Generalizability was assessed with a second independent sample gathering 2000 AVH labels (n=34 schizophrenia patients), while specificity was tested with a nonclinical control sample performing an auditory imagery task (840 labels, n=20). RESULTS Our between-subject classifier achieved high decoding accuracy (area-under-the-curve, AUC = 0.85) and discriminated AVH from rest and verbal imagery. Optimizing the parameters on the first schizophrenia dataset and testing its performance on the second dataset led to a 0.85 out-of-sample AUC (0.88 for the converse test). We showed that AVH detection critically depends on local BOLD activity patterns within Broca’s area. CONCLUSIONS Our results demonstrate that it is possible to reliably detect AVH-states from BOLD signals in schizophrenia patients using a multivariate decoder without performing complex regularization procedures. These findings constitute a crucial step toward brain-based treatments for severe drug-resistant hallucinations.
0

Cerebellum and social abilities: A structural and functional connectivity study in a transdiagnostic sample

Yue Kong et al.Jul 11, 2024
The cerebellum has been involved in social abilities and autism. Given that the cerebellum is connected to the cortex via the cerebello-thalamo-cortical loop, the connectivity between the cerebellum and cortical regions involved in social interactions, that is, the right temporo-parietal junction (rTPJ) has been studied in individuals with autism, who suffer from prototypical deficits in social abilities. However, existing studies with small samples of categorical, case-control comparisons have yielded inconsistent results due to the inherent heterogeneity of autism, suggesting that investigating how clinical dimensions are related to cerebellar-rTPJ functional connectivity might be more relevant. Therefore, our objective was to study the functional connectivity between the cerebellum and rTPJ, focusing on its association with social abilities from a dimensional perspective in a transdiagnostic sample. We analyzed structural magnetic resonance imaging (MRI) and functional MRI (fMRI) scans obtained during naturalistic films watching from a large transdiagnostic dataset, the Healthy Brain Network (HBN), and examined the association between cerebellum-rTPJ functional connectivity and social abilities measured with the social responsiveness scale (SRS). We conducted univariate seed-to-voxel analysis, multivariate canonical correlation analysis (CCA), and predictive support vector regression (SVR). We included 1404 subjects in the structural analysis (age: 10.516 ± 3.034, range: 5.822-21.820, 506 females) and 414 subjects in the functional analysis (age: 11.260 ± 3.318 years, range: 6.020-21.820, 161 females). Our CCA model revealed a significant association between cerebellum-rTPJ functional connectivity, full-scale IQ (FSIQ) and SRS scores. However, this effect was primarily driven by FSIQ as suggested by SVR and univariate seed-to-voxel analysis. We also demonstrated the specificity of the rTPJ and the influence of structural anatomy in this association. Our results suggest that there is a complex relationship between cerebellum-rTPJ connectivity, social performance and IQ. This relationship is specific to the cerebellum-rTPJ connectivity, and is largely related to structural anatomy in these two regions. PRACTITIONER POINTS: We analyzed cerebellum-right temporoparietal junction (rTPJ) connectivity in a pediatric transdiagnostic sample. We found a complex relationship between cerebellum and rTPJ connectivity, social performance and IQ. Cerebellum and rTPJ functional connectivity is related to structural anatomy in these two regions.
0

Brain Aging in Major Depressive Disorder: Results from the ENIGMA Major Depressive Disorder working group

Laura Han et al.Feb 26, 2019
Background: Major depressive disorder (MDD) is associated with an increased risk of brain atrophy, aging-related diseases, and mortality. We examined potential advanced brain aging in MDD patients, and whether this process is associated with clinical characteristics in a large multi-center international dataset. Methods: We performed a mega-analysis by pooling brain measures derived from T1-weighted MRI scans from 29 samples worldwide. Normative brain aging was estimated by predicting chronological age (10-75 years) from 7 subcortical volumes, 34 cortical thickness and 34 surface area, lateral ventricles and total intracranial volume measures separately in 1,147 male and 1,386 female controls from the ENIGMA MDD working group. The learned model parameters were applied to 1,089 male controls and 1,167 depressed males, and 1,326 female controls and 2,044 depressed females to obtain independent unbiased brain-based age predictions. The difference between predicted brain age and chronological age was calculated to indicate brain predicted age difference (brain-PAD). Findings: On average, MDD patients showed a higher brain-PAD of +0.90 (SE 0.21) years (Cohen's d=0.12, 95% CI 0.06-0.17) compared to controls. Relative to controls, first-episode and currently depressed patients showed higher brain-PAD (+1.2 [0.3] years), and the largest effect was observed in those with late-onset depression (+1.7 [0.7] years). In addition, higher brain-PAD was associated with higher self-reported depressive symptomatology (b=0.05, p=0.004). Interpretation: This highly powered collaborative effort showed subtle patterns of abnormal structural brain aging in MDD. Substantial within-group variance and overlap between groups were observed. Longitudinal studies of MDD and somatic health outcomes are needed to further assess the predictive value of these brain-PAD estimates.
1

Estimating multimodal brain variability in schizophrenia spectrum disorders: A worldwide ENIGMA study

Wolfgang Omlor et al.Sep 23, 2023
Abstract Schizophrenia is a multifaceted disorder associated with structural brain heterogeneity. Recent research underscored that profound understanding of structural brain heterogeneity is relevant to identify illness subtypes as well as informative biomarkers. However, our understanding of structural heterogeneity in schizophrenia is still limited. This comprehensive meta-analysis therefore investigated and compared the variability of multimodal structural brain measures for white and gray matter in individuals with schizophrenia and healthy controls. Using the ENIGMA dataset of MRI-based brain measures from 22 sites, we examined variability in cortical thickness, surface area, folding index, subcortical volume and fractional anisotropy, both at regional and global level. At the regional level, we found that schizophrenia patients are distinguished by higher heterogeneity in the frontotemporal network with regard to multimodal structural measures. Multimodal heterogeneity in these regions potentially implies different sub-types that share impaired frontotemporal interaction as a core feature of schizophrenia. At the global level, the Person-Based Similarity Index (PBSI) analysis surprisingly revealed that schizophrenia patients are distinguished by a significantly higher homogeneity of the folding index, implying that certain gyrification attributes represent a uniform aspect of schizophrenia across subtypes. These findings underscore the importance of studying structural brain variability for a more holistic understanding of schizophrenia’s neurobiology, potentially facilitating the identification of illness subtypes and informative biomarkers. These findings could guide future investigations and tailor precision medicine approaches for schizophrenia.
0

Increased and decreased superficial white matter structural connectivity in schizophrenia and bipolar disorder

Ellen Ji et al.Nov 19, 2018
Schizophrenia (SZ) and bipolar disorder (BD) are often conceptualized as 'disconnection syndromes', with substantial evidence of abnormalities in deep white matter tracts, forming the substrates of long-range connectivity, seen in both disorders. However, the study of superficial white matter (SWM) U-shaped short-range tracts remained challenging until recently, although findings from post-mortem studies suggest they are likely integral components of SZ and BD neuropathology. This diffusion weighted imaging (DWI) study aimed to investigate SWM microstructure in vivo in both SZ and BD for the first time. We performed whole brain tractography in 31 people with SZ, 32 people with BD and 54 controls using BrainVISA and Connectomist 2.0. Segmentation and labelling of SWM tracts were performed using a novel, comprehensive U-fiber atlas. Analysis of covariances yielded significant generalized fractional anisotropy (gFA) differences for 17 SWM bundles in frontal, parietal and temporal cortices. Post hoc analyses showed gFA reductions in both patient groups as compared with controls in bundles connecting regions involved in language processing, mood regulation, working memory and motor function (pars opercularis, insula, anterior cingulate, precentral gyrus). We also found increased gFA in SZ patients in areas overlapping the default mode network (inferior parietal, middle temporal, precuneus), supporting functional hyperconnectivity of this network evidenced in SZ. We thus illustrate that short U-fibers are vulnerable to the pathological processes in major psychiatric illnesses, encouraging improved understanding of their anatomy and function.
Load More