JL
Jacqueline Lane
Author with expertise in Sleep and Insomnia
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
26
(62% Open Access)
Cited by:
3,106
h-index:
33
/
i10-index:
73
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genome-wide association study identifies genetic loci for self-reported habitual sleep duration supported by accelerometer-derived estimates

Hassan Dashti et al.Mar 7, 2019
Abstract Sleep is an essential state of decreased activity and alertness but molecular factors regulating sleep duration remain unknown. Through genome-wide association analysis in 446,118 adults of European ancestry from the UK Biobank, we identify 78 loci for self-reported habitual sleep duration ( p < 5 × 10 −8 ; 43 loci at p < 6 × 10 −9 ). Replication is observed for PAX8 , VRK2 , and FBXL12/UBL5/PIN1 loci in the CHARGE study ( n = 47,180; p < 6.3 × 10 −4 ), and 55 signals show sign-concordant effects. The 78 loci further associate with accelerometer-derived sleep duration, daytime inactivity, sleep efficiency and number of sleep bouts in secondary analysis ( n = 85,499). Loci are enriched for pathways including striatum and subpallium development, mechanosensory response, dopamine binding, synaptic neurotransmission and plasticity, among others. Genetic correlation indicates shared links with anthropometric, cognitive, metabolic, and psychiatric traits and two-sample Mendelian randomization highlights a bidirectional causal link with schizophrenia. This work provides insights into the genetic basis for inter-individual variation in sleep duration implicating multiple biological pathways.
0
Citation442
0
Save
0

Night Shift Work, Genetic Risk, and Type 2 Diabetes in the UK Biobank

Céline Vetter et al.Feb 12, 2018
To examine the effects of past and current night shift work and genetic type 2 diabetes vulnerability on type 2 diabetes odds.In the UK Biobank, we examined associations of current (N = 272,214) and lifetime (N = 70,480) night shift work exposure with type 2 diabetes risk (6,770 and 1,191 prevalent cases, respectively). For 180,704 and 44,141 unrelated participants of European ancestry (4,002 and 726 cases, respectively) with genetic data, we assessed whether shift work exposure modified the relationship between a genetic risk score (comprising 110 single-nucleotide polymorphisms) for type 2 diabetes and prevalent diabetes.Compared with day workers, all current night shift workers were at higher multivariable-adjusted odds for type 2 diabetes (none or rare night shifts: odds ratio [OR] 1.15 [95% CI 1.05-1.26]; some nights: OR 1.18 [95% CI 1.05-1.32]; and usual nights: OR 1.44 [95% CI 1.19-1.73]), except current permanent night shift workers (OR 1.09 [95% CI 0.93-1.27]). Considering a person's lifetime work schedule and compared with never shift workers, working more night shifts per month was associated with higher type 2 diabetes odds (<3/month: OR 1.24 [95% CI 0.90-1.68]; 3-8/month: OR 1.11 [95% CI 0.90-1.37]; and >8/month: OR 1.36 [95% CI 1.14-1.62]; Ptrend = 0.001). The association between genetic type 2 diabetes predisposition and type 2 diabetes odds was not modified by shift work exposure.Our findings show that night shift work, especially rotating shift work including night shifts, is associated with higher type 2 diabetes odds and that the number of night shifts worked per month appears most relevant for type 2 diabetes odds. Also, shift work exposure does not modify genetic risk for type 2 diabetes, a novel finding that warrants replication.
0

Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depressive disorder

Naomi Wray et al.Jul 24, 2017
Major depressive disorder (MDD) is a notably complex illness with a lifetime prevalence of 14%. 1 It is often chronic or recurrent and is thus accompanied by considerable morbidity, excess mortality, substantial costs, and heightened risk of suicide. 2-7 MDD is a major cause of disability worldwide. 8 We conducted a genome-wide association (GWA) meta-analysis in 130,664 MDD cases and 330,470 controls, and identified 44 independent loci that met criteria for statistical significance. We present extensive analyses of these results which provide new insights into the nature of MDD. The genetic findings were associated with clinical features of MDD, and implicated prefrontal and anterior cingulate cortex in the pathophysiology of MDD (regions exhibiting anatomical differences between MDD cases and controls). Genes that are targets of antidepressant medications were strongly enriched for MDD association signals (P=8.5×10 −10 ), suggesting the relevance of these findings for improved pharmacotherapy of MDD. Sets of genes involved in gene splicing and in creating isoforms were also enriched for smaller MDD GWA P-values, and these gene sets have also been implicated in schizophrenia and autism. Genetic risk for MDD was correlated with that for many adult and childhood onset psychiatric disorders. Our analyses suggested important relations of genetic risk for MDD with educational attainment, body mass, and schizophrenia: the genetic basis of lower educational attainment and higher body mass were putatively causal for MDD whereas MDD and schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers of genetic risk factors for MDD, and a continuous measure of risk underlies the observed clinical phenotype. MDD is not a distinct entity that neatly demarcates normalcy from pathology but rather a useful clinical construct associated with a range of adverse outcomes and the end result of a complex process of intertwined genetic and environmental effects. These findings help refine and define the fundamental basis of MDD.
0
Citation62
0
Save
Load More