PO
Paul O’Reilly
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
30
(53% Open Access)
Cited by:
7,987
h-index:
70
/
i10-index:
130
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk

Georg Ehret et al.Sep 9, 2011
+121
R
S
G
Compared to other common complex diseases, it has proved remarkably difficult to establish the genetic basis of blood-pressure elevation. A multi-stage genome-wide association study involving 200,000 individuals of European descent provides some of the missing detail in the genetic picture. The study identified 16 relevant loci, of which only 6 contain genes previously known or suspected to regulate blood pressure. An association was found between hypertension, the thickness of the left ventricular wall, stroke and coronary artery disease, but not kidney disease or kidney function. Comparison with data from more than 75,000 people of East Asian, South Asian and African ancestries confirmed that many of the variants identified in European-ancestry subjects also influence blood pressure in other populations. Blood pressure is a heritable trait1 influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure)2. Even small increments in blood pressure are associated with an increased risk of cardiovascular events3. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3–GUCY1B3, NPR3–C5orf23, ADM, FURIN–FES, GOSR2, GNAS–EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.
0
Citation1,948
0
Save
0

PRSice: Polygenic Risk Score software

Jack Euesden et al.Dec 29, 2014
P
C
J
Abstract Summary: A polygenic risk score (PRS) is a sum of trait-associated alleles across many genetic loci, typically weighted by effect sizes estimated from a genome-wide association study. The application of PRS has grown in recent years as their utility for detecting shared genetic aetiology among traits has become appreciated; PRS can also be used to establish the presence of a genetic signal in underpowered studies, to infer the genetic architecture of a trait, for screening in clinical trials, and can act as a biomarker for a phenotype. Here we present the first dedicated PRS software, PRSice (‘precise'), for calculating, applying, evaluating and plotting the results of PRS. PRSice can calculate PRS at a large number of thresholds (“high resolution”) to provide the best-fit PRS, as well as provide results calculated at broad P-value thresholds, can thin Single Nucleotide Polymorphisms (SNPs) according to linkage disequilibrium and P-value or use all SNPs, handles genotyped and imputed data, can calculate and incorporate ancestry-informative variables, and can apply PRS across multiple traits in a single run. We exemplify the use of PRSice via application to data on schizophrenia, major depressive disorder and smoking, illustrate the importance of identifying the best-fit PRS and estimate a P-value significance threshold for high-resolution PRS studies. Availability and implementation: PRSice is written in R, including wrappers for bash data management scripts and PLINK-1.9 to minimize computational time. PRSice runs as a command-line program with a variety of user-options, and is freely available for download from http://PRSice.info Contact: jack.euesden@kcl.ac.uk or paul.oreilly@kcl.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online.
0
Citation1,191
0
Save
0

Genome-wide association study identifies eight loci associated with blood pressure

Christopher Newton‐Cheh et al.May 10, 2009
+96
V
T
C
Christopher Newton-Cheh and colleagues report a genome-wide association study for blood pressure traits as part of the Global BPgen consortium. They report eight loci with replicated association to systolic and/or diastolic blood pressure, with each also showing association to hypertension. Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To date, identification of common genetic variants influencing blood pressure has proven challenging. We tested 2.5 million genotyped and imputed SNPs for association with systolic and diastolic blood pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed up findings with direct genotyping (N ≤ 71,225 European ancestry, N ≤ 12,889 Indian Asian ancestry) and in silico comparison (CHARGE consortium, N = 29,136). We identified association between systolic or diastolic blood pressure and common variants in eight regions near the CYP17A1 (P = 7 × 10−24), CYP1A2 (P = 1 × 10−23), FGF5 (P = 1 × 10−21), SH2B3 (P = 3 × 10−18), MTHFR (P = 2 × 10−13), c10orf107 (P = 1 × 10−9), ZNF652 (P = 5 × 10−9) and PLCD3 (P = 1 × 10−8) genes. All variants associated with continuous blood pressure were associated with dichotomous hypertension. These associations between common variants and blood pressure and hypertension offer mechanistic insights into the regulation of blood pressure and may point to novel targets for interventions to prevent cardiovascular disease.
0
Citation1,184
0
Save
0

PRSice-2: Polygenic Risk Score software for biobank-scale data

Shing Choi et al.Jul 1, 2019
P
S
Polygenic risk score (PRS) analyses have become an integral part of biomedical research, exploited to gain insights into shared aetiology among traits, to control for genomic profile in experimental studies, and to strengthen causal inference, among a range of applications. Substantial efforts are now devoted to biobank projects to collect large genetic and phenotypic data, providing unprecedented opportunity for genetic discovery and applications. To process the large-scale data provided by such biobank resources, highly efficient and scalable methods and software are required.Here we introduce PRSice-2, an efficient and scalable software program for automating and simplifying PRS analyses on large-scale data. PRSice-2 handles both genotyped and imputed data, provides empirical association P-values free from inflation due to overfitting, supports different inheritance models, and can evaluate multiple continuous and binary target traits simultaneously. We demonstrate that PRSice-2 is dramatically faster and more memory-efficient than PRSice-1 and alternative PRS software, LDpred and lassosum, while having comparable predictive power.PRSice-2's combination of efficiency and power will be increasingly important as data sizes grow and as the applications of PRS become more sophisticated, e.g., when incorporated into high-dimensional or gene set-based analyses. PRSice-2 is written in C++, with an R script for plotting, and is freely available for download from http://PRSice.info.
0

Identification of seven loci affecting mean telomere length and their association with disease

Veryan Codd et al.Mar 27, 2013
+97
E
C
V
Nilesh Samani and colleagues report a meta-analysis of genome-wide association studies for mean leukocyte telomere length in 37,684 individuals, with replication of selected variants in an additional 10,739 individuals. They identify seven loci associated with mean telomere length, including two that have been associated with several cancers, and also find that alleles associated with shorter telomere length were associated with a higher risk of coronary artery disease. Interindividual variation in mean leukocyte telomere length (LTL) is associated with cancer and several age-associated diseases. We report here a genome-wide meta-analysis of 37,684 individuals with replication of selected variants in an additional 10,739 individuals. We identified seven loci, including five new loci, associated with mean LTL (P < 5 × 10−8). Five of the loci contain candidate genes (TERC, TERT, NAF1, OBFC1 and RTEL1) that are known to be involved in telomere biology. Lead SNPs at two loci (TERC and TERT) associate with several cancers and other diseases, including idiopathic pulmonary fibrosis. Moreover, a genetic risk score analysis combining lead variants at all 7 loci in 22,233 coronary artery disease cases and 64,762 controls showed an association of the alleles associated with shorter LTL with increased risk of coronary artery disease (21% (95% confidence interval, 5–35%) per standard deviation in LTL, P = 0.014). Our findings support a causal role of telomere-length variation in some age-related diseases.
0
Citation869
0
Save
0

Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma

John Chambers et al.Oct 16, 2011
+97
J
W
J
John Chambers and colleagues report a genome-wide association study for markers of liver function. They identify 42 loci associated with concentrations of one or more liver enzymes in plasma, and use a range of functional genomic analyses to suggest candidate genes at these loci. Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10−8 to P = 10−190). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, including genes involved in biliary transport (ATP8B1 and ABCB11), glucose, carbohydrate and lipid metabolism (FADS1, FADS2, GCKR, JMJD1C, HNF1A, MLXIPL, PNPLA3, PPP1R3B, SLC2A2 and TRIB1), glycoprotein biosynthesis and cell surface glycobiology (ABO, ASGR1, FUT2, GPLD1 and ST3GAL4), inflammation and immunity (CD276, CDH6, GCKR, HNF1A, HPR, ITGA1, RORA and STAT4) and glutathione metabolism (GSTT1, GSTT2 and GGT), as well as several genes of uncertain or unknown function (including ABHD12, EFHD1, EFNA1, EPHA2, MICAL3 and ZNF827). Our results provide new insight into genetic mechanisms and pathways influencing markers of liver function.
0
Citation519
0
Save
0

MultiPhen: Joint Model of Multiple Phenotypes Can Increase Discovery in GWAS

Paul O’Reilly et al.May 2, 2012
+4
Y
C
P
The genome-wide association study (GWAS) approach has discovered hundreds of genetic variants associated with diseases and quantitative traits. However, despite clinical overlap and statistical correlation between many phenotypes, GWAS are generally performed one-phenotype-at-a-time. Here we compare the performance of modelling multiple phenotypes jointly with that of the standard univariate approach. We introduce a new method and software, MultiPhen, that models multiple phenotypes simultaneously in a fast and interpretable way. By performing ordinal regression, MultiPhen tests the linear combination of phenotypes most associated with the genotypes at each SNP, and thus potentially captures effects hidden to single phenotype GWAS. We demonstrate via simulation that this approach provides a dramatic increase in power in many scenarios. There is a boost in power for variants that affect multiple phenotypes and for those that affect only one phenotype. While other multivariate methods have similar power gains, we describe several benefits of MultiPhen over these. In particular, we demonstrate that other multivariate methods that assume the genotypes are normally distributed, such as canonical correlation analysis (CCA) and MANOVA, can have highly inflated type-1 error rates when testing case-control or non-normal continuous phenotypes, while MultiPhen produces no such inflation. To test the performance of MultiPhen on real data we applied it to lipid traits in the Northern Finland Birth Cohort 1966 (NFBC1966). In these data MultiPhen discovers 21% more independent SNPs with known associations than the standard univariate GWAS approach, while applying MultiPhen in addition to the standard approach provides 37% increased discovery. The most associated linear combinations of the lipids estimated by MultiPhen at the leading SNPs accurately reflect the Friedewald Formula, suggesting that MultiPhen could be used to refine the definition of existing phenotypes or uncover novel heritable phenotypes.
0
Citation376
0
Save
0

Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels

Xia Jiang et al.Jan 11, 2018
+96
H
P
X
Abstract Vitamin D is a steroid hormone precursor that is associated with a range of human traits and diseases. Previous GWAS of serum 25-hydroxyvitamin D concentrations have identified four genome-wide significant loci ( GC, NADSYN1/DHCR7, CYP2R1, CYP24A1 ). In this study, we expand the previous SUNLIGHT Consortium GWAS discovery sample size from 16,125 to 79,366 (all European descent). This larger GWAS yields two additional loci harboring genome-wide significant variants ( P = 4.7×10 −9 at rs8018720 in SEC23A , and P = 1.9×10 −14 at rs10745742 in AMDHD1 ). The overall estimate of heritability of 25-hydroxyvitamin D serum concentrations attributable to GWAS common SNPs is 7.5%, with statistically significant loci explaining 38% of this total. Further investigation identifies signal enrichment in immune and hematopoietic tissues, and clustering with autoimmune diseases in cell-type-specific analysis. Larger studies are required to identify additional common SNPs, and to explore the role of rare or structural variants and gene–gene interactions in the heritability of circulating 25-hydroxyvitamin D levels.
0
Citation335
0
Save
0

Seventy-five genetic loci influencing the human red blood cell

Pim Harst et al.Dec 1, 2012
+99
I
W
P
Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci associated with one or more red blood cell phenotypes at P < 10−8, which together explain 4–9% of the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic strategies, we identify 121 candidate genes enriched in functions relevant to red blood cell biology. The candidate genes are expressed preferentially in red blood cell precursors, and 43 have haematopoietic phenotypes in Mus musculus or Drosophila melanogaster. Through open-chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our findings provide extensive new insights into genetic mechanisms and biological pathways controlling red blood cell formation and function. A series of genetic studies have led to the discovery of novel independent loci and candidate genes associated with red blood cell phenotype; for a proportion of these genes potential single-nucleotide genetic variants are also identified, providing new insights into genetic pathways controlling red blood cell formation, function and pathology. This genome-wide association study of more than 135,000 individuals identifies 75 independent genetic loci influencing red blood cell phenotypes, enriched for genes involved in cell cycle control, transcriptional regulation, growth factor and cytokine signalling, haemoglobin synthesis, iron handling and cytoskeletal function, as well as a number of genes of uncertain or unknown function. Further analyses identified 121 candidate genes related to red blood cell biology, one-third of which have haematopoietic phenotypes in mouse and Drosophila.
0
Citation316
0
Save
0

Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depressive disorder

Naomi Wray et al.Jul 24, 2017
+217
M
S
N
Major depressive disorder (MDD) is a notably complex illness with a lifetime prevalence of 14%. 1 It is often chronic or recurrent and is thus accompanied by considerable morbidity, excess mortality, substantial costs, and heightened risk of suicide. 2-7 MDD is a major cause of disability worldwide. 8 We conducted a genome-wide association (GWA) meta-analysis in 130,664 MDD cases and 330,470 controls, and identified 44 independent loci that met criteria for statistical significance. We present extensive analyses of these results which provide new insights into the nature of MDD. The genetic findings were associated with clinical features of MDD, and implicated prefrontal and anterior cingulate cortex in the pathophysiology of MDD (regions exhibiting anatomical differences between MDD cases and controls). Genes that are targets of antidepressant medications were strongly enriched for MDD association signals (P=8.5×10 −10 ), suggesting the relevance of these findings for improved pharmacotherapy of MDD. Sets of genes involved in gene splicing and in creating isoforms were also enriched for smaller MDD GWA P-values, and these gene sets have also been implicated in schizophrenia and autism. Genetic risk for MDD was correlated with that for many adult and childhood onset psychiatric disorders. Our analyses suggested important relations of genetic risk for MDD with educational attainment, body mass, and schizophrenia: the genetic basis of lower educational attainment and higher body mass were putatively causal for MDD whereas MDD and schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers of genetic risk factors for MDD, and a continuous measure of risk underlies the observed clinical phenotype. MDD is not a distinct entity that neatly demarcates normalcy from pathology but rather a useful clinical construct associated with a range of adverse outcomes and the end result of a complex process of intertwined genetic and environmental effects. These findings help refine and define the fundamental basis of MDD.
0
Citation62
0
Save
Load More