SA
Sandra Auwera
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(58% Open Access)
Cited by:
428
h-index:
40
/
i10-index:
79
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

White matter hyperintensities and imaging patterns of brain ageing in the general population

Mohamad Habes et al.Feb 24, 2016
+16
J
G
M
White matter hyperintensities are associated with increased risk of dementia and cognitive decline. The current study investigates the relationship between white matter hyperintensities burden and patterns of brain atrophy associated with brain ageing and Alzheimer’s disease in a large populatison-based sample ( n = 2367) encompassing a wide age range (20–90 years), from the Study of Health in Pomerania. We quantified white matter hyperintensities using automated segmentation and summarized atrophy patterns using machine learning methods resulting in two indices: the SPARE-BA index (capturing age-related brain atrophy), and the SPARE-AD index (previously developed to capture patterns of atrophy found in patients with Alzheimer’s disease). A characteristic pattern of age-related accumulation of white matter hyperintensities in both periventricular and deep white matter areas was found. Individuals with high white matter hyperintensities burden showed significantly ( P < 0.0001) lower SPARE-BA and higher SPARE-AD values compared to those with low white matter hyperintensities burden, indicating that the former had more patterns of atrophy in brain regions typically affected by ageing and Alzheimer’s disease dementia. To investigate a possibly causal role of white matter hyperintensities, structural equation modelling was used to quantify the effect of Framingham cardiovascular disease risk score and white matter hyperintensities burden on SPARE-BA, revealing a statistically significant ( P < 0.0001) causal relationship between them. Structural equation modelling showed that the age effect on SPARE-BA was mediated by white matter hyperintensities and cardiovascular risk score each explaining 10.4% and 21.6% of the variance, respectively. The direct age effect explained 70.2% of the SPARE-BA variance. Only white matter hyperintensities significantly mediated the age effect on SPARE-AD explaining 32.8% of the variance. The direct age effect explained 66.0% of the SPARE-AD variance. Multivariable regression showed significant relationship between white matter hyperintensities volume and hypertension ( P = 0.001), diabetes mellitus ( P = 0.023), smoking ( P = 0.002) and education level ( P = 0.003). The only significant association with cognitive tests was with the immediate recall of the California verbal and learning memory test. No significant association was present with the APOE genotype. These results support the hypothesis that white matter hyperintensities contribute to patterns of brain atrophy found in beyond-normal brain ageing in the general population. White matter hyperintensities also contribute to brain atrophy patterns in regions related to Alzheimer’s disease dementia, in agreement with their known additive role to the likelihood of dementia. Preventive strategies reducing the odds to develop cardiovascular disease and white matter hyperintensities could decrease the incidence or delay the onset of dementia. White matter hyperintensities (WMH) are associated with increased risk of cognitive decline. In a large population-based sample, Habes et al. reveal that WMH burden contributes to atrophy in regions typically affected by beyond-normal brain ageing and Alzheimer’s disease. Strategies aimed at preventing WMH development could delay the onset of dementia.
0

Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depressive disorder

Naomi Wray et al.Jul 24, 2017
+217
M
S
N
Major depressive disorder (MDD) is a notably complex illness with a lifetime prevalence of 14%. 1 It is often chronic or recurrent and is thus accompanied by considerable morbidity, excess mortality, substantial costs, and heightened risk of suicide. 2-7 MDD is a major cause of disability worldwide. 8 We conducted a genome-wide association (GWA) meta-analysis in 130,664 MDD cases and 330,470 controls, and identified 44 independent loci that met criteria for statistical significance. We present extensive analyses of these results which provide new insights into the nature of MDD. The genetic findings were associated with clinical features of MDD, and implicated prefrontal and anterior cingulate cortex in the pathophysiology of MDD (regions exhibiting anatomical differences between MDD cases and controls). Genes that are targets of antidepressant medications were strongly enriched for MDD association signals (P=8.5×10 −10 ), suggesting the relevance of these findings for improved pharmacotherapy of MDD. Sets of genes involved in gene splicing and in creating isoforms were also enriched for smaller MDD GWA P-values, and these gene sets have also been implicated in schizophrenia and autism. Genetic risk for MDD was correlated with that for many adult and childhood onset psychiatric disorders. Our analyses suggested important relations of genetic risk for MDD with educational attainment, body mass, and schizophrenia: the genetic basis of lower educational attainment and higher body mass were putatively causal for MDD whereas MDD and schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers of genetic risk factors for MDD, and a continuous measure of risk underlies the observed clinical phenotype. MDD is not a distinct entity that neatly demarcates normalcy from pathology but rather a useful clinical construct associated with a range of adverse outcomes and the end result of a complex process of intertwined genetic and environmental effects. These findings help refine and define the fundamental basis of MDD.
0
Citation62
0
Save
21

Genetic variants for head size share genes and pathways with cancer

Maria Knol et al.Jul 16, 2020
+123
D
C
M
Abstract The size of the human head is determined by growth in the first years of life, while the rest of the body typically grows until early adulthood 1 . Such complex developmental processes are regulated by various genes and growth pathways 2 . Rare genetic syndromes have revealed genes that affect head size 3 , but the genetic drivers of variation in head size within the general population remain largely unknown. To elucidate biological pathways underlying the growth of the human head, we performed the largest genome-wide association study on human head size to date (N = 79,107). We identified 67 genetic loci, 50 of which are novel, and found that these loci are preferentially associated with head size and mostly independent from height. In subsequent neuroimaging analyses, the majority of genetic variants demonstrated widespread effects on the brain, whereas the effects of 17 variants could be localized to one or two specific brain regions. Through hypothesis-free approaches, we find a strong overlap of head size variants with both cancer pathways and cancer genes. Gene set analyses showed enrichment for different types of cancer and the p53, Wnt and ErbB signalling pathway. Genes overlapping or close to lead variants – such as TP53 , PTEN and APC – were enriched for genes involved in macrocephaly syndromes (up to 37-fold) and high-fidelity cancer genes (up to 9-fold), whereas this enrichment was not seen for human height variants. This indicates that genes regulating early brain and cranial growth are associated with a propensity to neoplasia later in life, irrespective of height. Our results warrant further investigations of the link between head size and cancer, as well as its clinical implications in the general population.
21
Citation6
0
Save
0

Impact of gene-by-trauma interaction in MDD-related multimorbidity clusters

Sarah Bonk et al.May 26, 2024
+8
K
N
S
Major depressive disorder (MDD) is considerably heterogeneous in terms of comorbidities, which may hamper the disentanglement of its biological mechanism. In a previous study, we classified the lifetime trajectories of MDD-related multimorbidities into seven distinct clusters, each characterized by unique genetic and environmental risk-factor profiles. The current objective was to investigate genome-wide gene-by-environment (G × E) interactions with childhood trauma burden, within the context of these clusters. We analyzed 77,519 participants and 6,266,189 single-nucleotide polymorphisms (SNPs) of the UK Biobank database. Childhood trauma burden was assessed using the Childhood Trauma Screener (CTS). For each cluster, Plink 2.0 was used to calculate SNP × CTS interaction effects on the participants' cluster membership probabilities. We especially focused on the effects of 31 candidate genes and associated SNPs selected from previous G × E studies for childhood maltreatment's association with depression. At SNP-level, only the high-multimorbidity Cluster 6 revealed a genome-wide significant SNP rs145772219. At gene-level, MPST and PRH2 were genome-wide significant for the low-multimorbidity Clusters 1 and 3, respectively. Regarding candidate SNPs for G × E interactions, individual SNP results could be replicated for specific clusters. The candidate genes CREB1, DBH, and MTHFR (Cluster 5) as well as TPH1 (Cluster 6) survived multiple testing correction. CTS is a short retrospective self-reported measurement. Clusters could be influenced by genetics of individual disorders. The first G × E GWAS for MDD-related multimorbidity trajectories successfully replicated findings from previous G × E studies related to depression, and revealed risk clusters for the contribution of childhood trauma.
0
Citation2
0
Save
0

Minimal phenotyping yields GWAS hits of reduced specificity for major depression

Na Cai et al.Oct 11, 2018
+30
H
M
N
Minimal phenotyping refers to the reliance on the use of a small number of self-report items for disease case identification. This strategy has been applied to genome-wide association studies (GWAS) of major depressive disorder (MDD). Here we report that the genotype derived heritability (h2SNP) of depression defined by minimal phenotyping (14%, SE = 0.8%) is lower than strictly defined MDD (26%, SE = 2.2%). This cannot be explained by differences in prevalence between definitions or including cases of lower liability to MDD in minimal phenotyping definitions of depression, but can be explained by misdiagnosis of those without depression or with related conditions as cases of depression. Depression defined by minimal phenotyping is as genetically correlated with strictly defined MDD (rG = 0.81, SE = 0.03) as it is with the personality trait neuroticism (rG = 0.84, SE = 0.05), a trait not defined by the cardinal symptoms of depression. While they both show similar shared genetic liability with neuroticism, a greater proportion of the genome contributes to the minimal phenotyping definitions of depression (80.2%, SE = 0.6%) than to strictly defined MDD (65.8%, SE = 0.6%). We find that GWAS loci identified in minimal phenotyping definitions of depression are not specific to MDD: they also predispose to other psychiatric conditions. Finally, while highly predictive polygenic risk scores can be generated from minimal phenotyping definitions of MDD, the predictive power can be explained entirely by the sample size used to generate the polygenic risk score, rather than specificity for MDD. Our results reveal that genetic analysis of minimal phenotyping definitions of depression identifies non-specific genetic factors shared between MDD and other psychiatric conditions. Reliance on results from minimal phenotyping for MDD may thus bias views of the genetic architecture of MDD and may impede our ability to identify pathways specific to MDD.
0

Planar cell polarity pathway and development of the human visual cortex

Jean Shin et al.Aug 31, 2018
+361
M
Y
J
The radial unit hypothesis provides a framework for global (proliferation) and regional (distribution) expansion of the primate cerebral cortex. Using principal component analysis (PCA), we have identified cortical regions with shared variance in their surface area and cortical thickness, respectively, segmented from magnetic resonance images obtained in 23,800 participants. We then carried out meta-analyses of genome-wide association studies of the first two principal components for each phenotype. For surface area (but not cortical thickness), we have detected strong associations between each of the components and single nucleotide polymorphisms in a number of gene loci. The first (global) component was associated mainly with loci on chromosome 17 (9.5e-32 ≤ p ≤ 2.8e-10), including those detected previously as linked with intracranial volume and/or general cognitive function. The second (regional) component captured shared variation in the surface area of the primary and adjacent secondary visual cortices and showed a robust association with polymorphisms in a locus on chromosome 14 containing Disheveled Associated Activator of Morphogenesis 1 ( DAAM1 ; p =2.4e-34). DAAM1 is a key component in the planar-cell-polarity signaling pathway. In follow-up studies, we have focused on the latter finding and established that: (1) DAAM1 is highly expressed between 12th and 22nd post-conception weeks in the human cerebral cortex; (2) genes co-expressed with DAAM1 in the primary visual cortex are enriched in mitochondria-related pathways; and (3) volume of the lateral geniculate nucleus, which projects to regions of the visual cortex staining for cytochrome oxidase (a mitochondrial enzyme), correlates with the surface area of the visual cortex in major-allele homozygotes but not in carriers of the minor allele. Altogether, we speculate that, in concert with thalamocortical input to cortical subplate, DAAM1 enables migration of neurons to cytochrome-oxidase rich regions of the visual cortex, and, in turn, facilitates regional expansion of this set of cortical regions during development.
0

Genome-wide association study of suicide attempt in psychiatric disorders identifies association with major depression polygenic risk scores

Niamh Mullins et al.Sep 14, 2018
+114
F
A
N
Objective: Over 90% of suicide attempters have a psychiatric diagnosis, however twin and family studies suggest that the genetic etiology of suicide attempt (SA) is partially distinct from that of the psychiatric disorders themselves. Here, we present the largest genome-wide association study (GWAS) on suicide attempt using major depressive disorder (MDD), bipolar disorder (BIP) and schizophrenia (SCZ) cohorts from the Psychiatric Genomics Consortium. Method: Samples comprise 1622 suicide attempters and 8786 non-attempters with MDD, 3264 attempters and 5500 non-attempters with BIP and 1683 attempters and 2946 non-attempters with SCZ. SA GWAS were performed comparing attempters to non-attempters in each disorder followed by meta-analysis across disorders. Polygenic risk scoring investigated the genetic relationship between SA and the psychiatric disorders. Results: Three genome-wide significant loci for SA were found: one associated with SA in MDD, one in BIP, and one in the meta-analysis of SA in mood disorders. These associations were not replicated in independent mood disorder cohorts from the UK Biobank and iPSYCH. Polygenic risk scores for major depression were significantly associated with SA in MDD (P=0.0002), BIP (P=0.0006) and SCZ (P=0.0006). Conclusions: This study provides new information on genetic associations and the genetic etiology of SA across psychiatric disorders. The finding that polygenic risk scores for major depression predict suicide attempt across disorders provide a possible starting point for predictive modelling and preventative strategies. Further collaborative efforts to increase sample size hold potential to robustly identify genetic associations and gain biological insights into the etiology of suicide attempt.
5

Investigating the genetic and environmental basis of head micromovements during MRI

Frauke Beyer et al.Oct 26, 2021
+24
S
K
F
Abstract Introduction Head motion during magnetic resonance imaging is heritable. Further, it shares phenotypical and genetic variance with body mass index (BMI) and impulsivity. Yet, to what extent this trait is related to single genetic variants and physiological or behavioral features is unknown. We investigated the genetic basis of head motion in a meta-analysis of genome-wide association studies. Further, we tested whether physiological or psychological measures, such as respiratory rate or impulsivity, mediated the relationship between BMI and head motion. Methods We conducted a genome-wide association meta-analysis for mean and maximal framewise head displacement (FD) in seven population neuroimaging cohorts (UK Biobank, LIFE-Adult, Rotterdam Study cohort 1-3, Austrian Stroke Prevention Family Study, Study of Health in Pomerania; total N = 35.109). We performed a pre-registered analysis to test whether respiratory rate, respiratory volume, self-reported impulsivity and heart rate mediated the relationship between BMI and mean FD in LIFE-Adult. Results No variant reached genome-wide significance for neither mean nor maximal FD. Neither physiological nor psychological measures mediated the relationship between BMI and head motion. Conclusion Based on these findings from a large meta-GWAS and pre-registered follow-up study, we conclude that the previously reported genetic correlation between BMI and head motion relies on polygenic variation, and that neither psychological nor simple physiological parameters explain a substantial amount of variance in the association of BMI and head motion. Future imaging studies should thus rigorously control for head motion at acquisition and during preprocessing.
0

Genome-wide gene-environment analyses of major depressive disorder and reported lifetime traumatic experiences in UK Biobank

Jonathan Coleman et al.Jan 12, 2018
+23
K
K
J
Depression is more frequent among individuals exposed to traumatic events. Both trauma exposure and depression are heritable. However, the relationship between these traits, including the role of genetic risk factors, is complex and poorly understood. When modelling trauma exposure as an environmental influence on depression, both gene-environment correlations and gene-environment interactions have been observed. The UK Biobank concurrently assessed Major Depressive Disorder (MDD) and self-reported lifetime exposure to traumatic events in 126,522 genotyped individuals of European ancestry. We contrasted genetic influences on MDD between individuals reporting and not reporting trauma exposure (final sample size range: 24,094-92,957). The SNP-based heritability of MDD was greater in participants reporting trauma exposure (24%) than in individuals not reporting trauma exposure (12%), taking into account the strong, positive genetic correlation observed between MDD and reported trauma exposure. The genetic correlation between MDD and waist circumference was only significant in individuals reporting trauma exposure (rg = 0.24, p = 1.8×10-7 versus rg = −0.05, p = 0.39 in individuals not reporting trauma exposure, difference p = 2.3×10-4). Our results suggest that the genetic contribution to MDD is greater when additional risk factors are present, and that a complex relationship exists between reported trauma exposure, body composition, and MDD.
0

Genetic variation in the Major Histocompatibility Complex and association with depression

Kylie Glanville et al.Nov 19, 2018
+52
T
T
K
Background: The prevalence of depression is higher in individuals suffering from autoimmune diseases, but the mechanisms underlying the observed comorbidities are unknown. Epidemiological findings point to a bi-directional relationship - that depression increases the risk of developing an autoimmune disease, and vice-versa. Shared genetic etiology is a plausible explanation for the overlap between depression and autoimmune diseases. In this study we tested whether genetic variation in the Major Histocompatibility Complex (MHC), which is associated with risk for autoimmune diseases, is also associated with risk for depression. Method: We fine-mapped the classical MHC (chr6: 29.6-33.1 Mb), imputing 216 Human Leukocyte Antigen (HLA) alleles and four Complement Component 4 (C4) haplotypes in studies from the Psychiatric Genomics Consortium (PGC) Major Depressive Disorder (MDD) working group and the UK Biobank (UKB). In the 26 PGC-MDD studies, cases met a lifetime diagnosis of MDD, determined by a structured diagnostic interview. In the UKB, cases and controls were identified from an online mental health questionnaire. The total sample size was 45,149 depression cases and 86,698 controls. We tested for association between depression status and imputed MHC variants in each study and performed an inverse-variance weighted meta-analysis across the PGC-MDD and UKB samples, applying both a conservative region-wide significance threshold (3.9-e6) and a candidate threshold (1.6e-4). Results: No HLA alleles or C4 haplotypes were associated with depression at the conservative threshold in the PGC, UKB or meta-analysis. HLA-B*08:01 was associated with modest protection for depression at the candidate threshold in the meta-analysis. Under the conservative threshold, 70 SNPs were detected in the UKB and 143 SNPs were detected in the meta-analysis, mirroring previous findings from highly powered GWAS of depression. Discussion: We found no evidence that HLA alleles, which play a major role in the genetic susceptibility to autoimmune diseases, or C4 haplotypes, which are strongly associated with schizophrenia, confer risk for depression. These results indicate that autoimmune diseases and depression do not share common risk loci of moderate or large effect in the MHC.
Load More