CP
Chan Park
Author with expertise in Molecular Mechanisms of Plant Development and Regulation
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
5
h-index:
10
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Deconvoluting signals downstream of growth and immune receptor kinases by phosphocodes of the BSU1 family phosphatases

Chan Park et al.Jun 27, 2019
+13
S
J
C
Abstract Hundreds of leucine-rich repeat receptor kinases (LRR-RKs) have evolved to control diverse processes of growth, development, and immunity in plants; the mechanisms that link LRR-RKs to distinct cellular responses are not understood. Here we show that two LRR-RKs, the brassinosteroid hormone receptor BRI1 (BRASSINOSTEROID INSENSITIVE 1) and the flagellin receptor FLS2 (FLAGELLIN SENSING 2), regulate downstream glycogen synthase kinase 3 (GSK3) and mitogen-activated protein (MAP) kinases, respectively, through phosphocoding of the BRI1-SUPPRESSOR1 (BSU1) phosphatase. BSU1 was previously identified as a component that inactivates GSK3s in the BRI1 pathway. We found surprisingly that loss of the BSU1 family phosphatases activates effector-triggered immunity (ETI) and impairs flagellin-triggered MAP kinase activation and immunity. The flagellin-activated BOTRYTIS-INDUCED KINASE 1 (BIK1) phosphorylates BSU1 at serine-251. Mutation of serine-251 reduces the ability of BSU1 to mediate flagellin-induced MAP kinase activation and immunity, but not its abilities to suppress ETI and interact with GSK3, which is enhanced through the phosphorylation of BSU1 at serine-764 upon brassinosteroid signaling. These results demonstrate that BSU1 plays an essential role in immunity and transduces brassinosteroid-BRI1 and flagellin-FLS2 signals using different phosphorylation sites. Our study illustrates that phosphocoding in shared downstream components provides signaling specificities for diverse plant receptor kinases.
0
Citation5
0
Save
0

Application of TurboID-mediated proximity labeling for mapping a GSK3 kinase signaling network in Arabidopsis

Tae‐Wuk Kim et al.May 13, 2019
+7
C
C
T
Transient protein-protein interactions (PPIs), such as those between posttranslational modifying enzymes and their substrates, play key roles in cellular regulation, but are difficult to identify. Here we demonstrate the application of enzyme-catalyzed proximity labeling (PL), using the engineered promiscuous biotin ligase TurboID, as a sensitive method for characterizing PPIs in signaling networks. We show that TurboID fused with the GSK3-like kinase BIN2 or a PP2A phosphatase biotinylates their known substrate, the BZR1 transcription factor, with high specificity and efficiency. We optimized the protocol of biotin labeling and affinity purification in transgenic Arabidopsis expressing a BIN2-TurboID fusion protein. Subsequent quantitative mass spectrometry (MS) analysis identified about three hundred proteins biotinylated by BIN2-TurboID more efficiently than the YFP-TurboID control. These include a significant subset of previously proven BIN2 interactors and a large number of new BIN2-proximal proteins that uncover a broad BIN2 signaling network. Our study illustrates that PL-MS using TurboID is a powerful tool for mapping signaling networks, and reveals broad roles of BIN2 kinase in cellular signaling and regulation in plants.
1

Regulation of adaptive growth decisions via phosphorylation of the TRAPPII complex in Arabidopsis

Christian Wiese et al.Apr 26, 2023
+16
P
C
C
ABSTRACT Plants often adapt to adverse or stress conditions via differential growth. The trans-Golgi Network (TGN) has been implicated in stress responses, but it is not clear in what capacity it mediates adaptive growth decisions. In this study, we assess the role of the TGN in stress responses by exploring the interactome of the Transport Protein Particle II (TRAPPII) complex, required for TGN structure and function. Together with yeast-two-hybrid screens, this identified shaggy-like kinases (GSK3/AtSKs) as TRAPPII interactors. Kinase assays and pharmacological inhibition provided in vitro and in vivo evidence that AtSKs target the TRAPPII-specific subunit AtTRS120. We identified three GSK3/AtSK phosphorylation sites in AtTRS120. These sites were mutated, and the resulting AtTRS120 phosphovariants subjected to a variety of single and multiple stress conditions. The non-phosphorylatable TRS120 mutant exhibited enhanced adaptation to multiple stress conditions and to osmotic stress whereas the phosphomimetic version was less resilient. This suggests that the TRAPPII phosphostatus mediates adaptive responses to abiotic stress factors. AtSKs are multitaskers that integrate a broad range of signals. Similarly, the TRAPPII interactome is vast and considerably enriched in signaling components. An AtSK-TRAPPII interaction would integrate all levels of cellular organization and instruct the TGN, a central and highly discriminate cellular hub, as to how to mobilize and allocate resources to optimize growth and survival under limiting or adverse conditions.
28

A Spatiotemporal Molecular Switch Governs Plant Asymmetric Cell Division

Xiaoyu Guo et al.Sep 8, 2020
+2
C
Z
X
Summary Asymmetric cell division (ACD) often requires protein polarization in the mother cell to produce daughter cells with distinct identities (“cell-fate asymmetry”). Here, we define a previously undocumented mechanism for establishing cell-fate asymmetry in Arabidopsis stomatal stem cells. In particular, we show that polarization of BSL protein phosphatases promotes stomatal ACD by establishing a “kinase-based signaling asymmetry” in the two daughter cells. BSL polarization in the stomatal ACD mother cell is triggered upon commitment to cell division. Polarized BSL is inherited by the differentiating daughter cell where it suppresses cell division and promotes cell-fate determination. Plants lacking BSL exhibit stomatal over-proliferation, demonstrating BSL plays an essential role in stomatal development. Our findings establish that BSL polarization provides a spatiotemporal molecular switch that enables cell-fate asymmetry in stomatal ACD daughter cells. We propose BSL polarization is triggered by an ACD “checkpoint” in the mother cell that monitors establishment of division-plane asymmetry.