LM
Laura Mattner
Author with expertise in Neonatal Lung Development and Respiratory Morbidity
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
465
h-index:
3
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Longitudinal single cell transcriptomics reveals Krt8+ alveolar epithelial progenitors in lung regeneration

Maximilian Strunz et al.Jul 17, 2019
Lung injury activates quiescent stem and progenitor cells to regenerate alveolar structures. The sequence and coordination of transcriptional programs during this process has largely remained elusive. Using single cell RNA-seq, we first generated a whole-organ bird’s-eye view on cellular dynamics and cell-cell communication networks during mouse lung regeneration from ~30,000 cells at six timepoints. We discovered an injury-specific progenitor cell state characterized by Krt8 in flat epithelial cells covering alveolar surfaces. The number of these cells peaked during fibrogenesis in independent mouse models, as well as in human acute lung injury and fibrosis. Krt8+ alveolar progenitors featured a highly distinct connectome of receptor-ligand pairs with endothelial cells, fibroblasts, and macrophages. To ‘sky dive’ into epithelial differentiation dynamics, we sequenced >30,000 sorted epithelial cells at 18 timepoints and computationally derived cell state trajectories that were validated by lineage tracing genetic reporter mice. Airway stem cells within the club cell lineage and alveolar type-2 cells underwent transcriptional convergence onto the same Krt8+ progenitor cell state, which later resolved by terminal differentiation into alveolar type-1 cells. We derived distinct transcriptional regulators as key switch points in this process and show that induction of NFkB, p53, and hypoxia driven gene expression programs precede a Sox4, Ctnnb1, and Wwtr1 driven commitment towards alveolar type-1 cell fate. We show that epithelial cell plasticity can induce non-gradual transdifferentiation, involving intermediate progenitor cell states that may persist and promote disease if checkpoint signals for terminal differentiation are perturbed.
0

Adaptive mitochondrial regulation of the proteasome

Thomas Meul et al.Apr 8, 2020
The proteasome is the main proteolytic system for targeted protein degradation in the cell. Its function is fine-tuned according to cellular needs. Regulation of proteasome function by mitochondrial metabolism, however, is unknown. Here, we demonstrate that mitochondrial dysfunction reduces the assembly and activity of the 26S proteasome in the absence of oxidative stress. Impaired respiratory complex I function leads to metabolic reprogramming of the Krebs cycle and deficiency in aspartate. Aspartate supplementation activates assembly and activity of 26S proteasomes via transcriptional activation of the proteasome assembly factors p28 and Rpn6. This metabolic adaptation of 26S proteasome function involves sensing of aspartate via the mTORC1 pathway. Metformin treatment of primary human cells similarly reduced assembly and activity of 26S proteasome complexes, which was rescued by supplementation of aspartate or pyruvate. Our study uncovers a fundamental novel mechanism of how mitochondrial metabolism adjusts protein degradation by the proteasome. It thus unravels unexpected consequences of defective mitochondrial metabolism in disease or drug-targeted mitochondrial reprogramming for proteasomal protein degradation in the cell. As metabolic inhibition of proteasome function can be alleviated by treatment with aspartate or pyruvate, our results will also have therapeutic implications.
40

Phosphoproteomics of cellular mechanosensing reveals NFATC4 as a regulator of myofibroblast activity

Laura Mattner et al.Feb 13, 2023
Abstract Feedback connections between tissue stiffness and cellular contractile forces can instruct cell identity and activity via a process referred to as mechanosensing. Specific phosphoproteome changes during mechanosensing are poorly characterized. In this work, we chart the global phosphoproteome dynamics of primary human lung fibroblasts sensing the stiffness of injury relevant fibronectin coated Poly(dimethylsiloxane) substrates. We discovered a key signaling threshold at a Young’s modulus of eight kPa stiffness, above which cells activated a large number of pathways including RhoA, CK2A1, PKA, AMPK, AKT1, and Hippo-YAP1/TAZ mediated signaling. Time-resolved phosphoproteomics of cell spreading on stiff substrates revealed the temporal dynamics of these stiffness-sensitive signaling pathways. ECM substrate stiffness above eight kPA induced fibroblast contractility, cytoskeletal rearrangements, ECM secretion, and a fibroblast to myofibroblast transition. Our data indicate that phosphorylation of the transcriptional regulator NFATC4 at S213/S217 enhances myofibroblast activity, which is the key hallmark of fibrotic diseases. NFATC4 knock down cells display reduced stiffness induced collagen secretion, cell contractility, nuclear deformation and invasion, suggesting NFATC4 as a novel target for antifibrotic therapy. Synopsis How tissue stiffness regulates identity and activity of tissue fibroblasts is unclear. Mass spectrometry based analysis of tissue stiffness dependent phosphoproteome changes reveals how primary lung fibroblasts sense the mechanical properties of their environment and identifies NFATC4 as a novel regulator of the stiffness dependent transition of fibroblasts to ECM secreting myofibroblasts. Mass spectrometry analysis reveals the signaling landscape of fibroblast mechanosensing Time-resolved phosphoproteomic analysis of cell spreading on fibronectin NFATC4 regulates myofibroblast collagen secretion, cell contractility and invasion