JK
Jaymin Kathiriya
Author with expertise in Neonatal Lung Development and Respiratory Morbidity
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
859
h-index:
12
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
13

Human alveolar Type 2 epithelium transdifferentiates into metaplastic KRT5+ basal cells during alveolar repair

Jaymin Kathiriya et al.Jun 6, 2020
SUMMARY Understanding differential lineage potential of orthologous stem cells across species can shed light on human disease. Here, utilizing 3D organoids, single cell RNAseq, and xenotransplants, we demonstrate that human alveolar type 2 cells (hAEC2s), unlike murine AEC2s, are multipotent and able to transdifferentiate into KRT5+ basal cells when co-cultured with primary fibroblasts in 3D organoids. Trajectory analyses and immunophenotyping of epithelial progenitors in idiopathic pulmonary fibrosis (IPF) indicate that hAEC2s transdifferentiate into metaplastic basal cells through alveolar-basal intermediate (ABI) cells that we also identify in hAEC2-derived organoids. Modulating hAEC2-intrinsic and niche factors dysregulated in IPF can attenuate metaplastic basal cell transdifferentiation and preserve hAEC2 identity. Finally, hAEC2s transplanted into fibrotic immune-deficient murine lungs engraft as either hAEC2s or differentiated KRT5+ basal cells. Our study indicates that hAEC2s-loss and expansion of alveolar metaplastic basal cells in IPF are causally connected, which would not have been revealed utilizing murine AEC2s as a model. Highlights Human AEC2s transdifferentiate into KRT5+ basal cells when accompanied by primary adult human lung mesenchyme in 3D organoid culture. Alterations of hAEC2-intrinsic and niche factors dysregulated in IPF can modify metaplastic hAEC2 transdifferentiation. hAEC2s engraft into fibrotic lungs of immune-deficient mice and transdifferentiate into metaplastic basal cells. Transcriptional trajectory analysis suggests that hAEC2s in IPF gives rise to metaplastic basal cells via alveolar-basal intermediate cells.
13
Citation14
0
Save
1

IRE1α drives lung epithelial progenitor dysfunction to establish a niche for pulmonary fibrosis

Vincent Auyeung et al.Sep 17, 2021
Abstract Idiopathic pulmonary fibrosis (IPF) is a disease of progressive interstitial fibrosis, which leads to severe debilitation, respiratory failure, and death. In IPF, environmental exposures interact with genetic risk factors to engender critical patho-etiological events in lung epithelial cells, including endoplasmic reticulum (ER) stress and TGFβ signaling, but the interactions between these disparate pathways are not well understood. We previously showed that kinase inhibitors of the IRE1α bifunctional kinase/RNase—a central mediator of the unfolded protein response (UPR) to ER stress—protected mice from bleomycin-induced pulmonary fibrosis. Here we show that a nanomolar-potent, mono-selective kinase inhibitor of IRE1α (KIRA8) decreases ER-stress induced TGFβ signaling and the senescence-associated secretory phenotype (SASP) in the lung epithelium after bleomycin exposure. A recently-described subset of “damage-associated transient progenitors” (DATPs) display IRE1α-regulated pathological gene signatures that are quelled by KIRA8, in vivo . After injury, these cells uniquely express integrin αvβ6, a key activator of TGFβ in pulmonary fibrosis. KIRA8 inhibition of IRE1α decreases both DATP number and Itgb6 expression in remaining cells, with a decrease in local collagen accumulation. Single-cell RNA sequencing from IPF lungs revealed an analogous Itgb6+ cell population that may also be regulated by IRE1α. These findings suggest that lung epithelial progenitor cells sit at the center of the fibrotic niche, and IRE1α signaling locks them into a dysfunctional state that establishes and perpetuates pathological fibrosis.
0

Longitudinal single cell transcriptomics reveals Krt8+ alveolar epithelial progenitors in lung regeneration

Maximilian Strunz et al.Jul 17, 2019
Lung injury activates quiescent stem and progenitor cells to regenerate alveolar structures. The sequence and coordination of transcriptional programs during this process has largely remained elusive. Using single cell RNA-seq, we first generated a whole-organ bird’s-eye view on cellular dynamics and cell-cell communication networks during mouse lung regeneration from ~30,000 cells at six timepoints. We discovered an injury-specific progenitor cell state characterized by Krt8 in flat epithelial cells covering alveolar surfaces. The number of these cells peaked during fibrogenesis in independent mouse models, as well as in human acute lung injury and fibrosis. Krt8+ alveolar progenitors featured a highly distinct connectome of receptor-ligand pairs with endothelial cells, fibroblasts, and macrophages. To ‘sky dive’ into epithelial differentiation dynamics, we sequenced >30,000 sorted epithelial cells at 18 timepoints and computationally derived cell state trajectories that were validated by lineage tracing genetic reporter mice. Airway stem cells within the club cell lineage and alveolar type-2 cells underwent transcriptional convergence onto the same Krt8+ progenitor cell state, which later resolved by terminal differentiation into alveolar type-1 cells. We derived distinct transcriptional regulators as key switch points in this process and show that induction of NFkB, p53, and hypoxia driven gene expression programs precede a Sox4, Ctnnb1, and Wwtr1 driven commitment towards alveolar type-1 cell fate. We show that epithelial cell plasticity can induce non-gradual transdifferentiation, involving intermediate progenitor cell states that may persist and promote disease if checkpoint signals for terminal differentiation are perturbed.