AK
Andrew Kruse
Author with expertise in Structure and Function of G Protein-Coupled Receptors
Harvard University, Boston VA Research Institute, Center for Systems Biology
+ 1 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
17
(59% Open Access)
Cited by:
26
h-index:
18
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
25

Crystal structures of the σ2 receptor template large-library docking for selective chemotypes active in vivo

Assaf Alon et al.Oct 24, 2023
+13
J
J
A
Abstract The σ 2 receptor is a poorly understood transmembrane receptor that has attracted intense interest in many areas of biology including cancer imaging, Alzheimer’s disease, schizophrenia, and neuropathic pain. However, little is known regarding the molecular details of the receptor, and few highly selective ligands are available. Here, we report the crystal structure of the σ 2 receptor in complex with the clinical drug candidate roluperidone and the probe compound PB28. These structures, in turn, templated a large-scale docking screen of 490 million make-on-demand molecules. Of these, 484 compounds were synthesized and tested, prioritizing not only high-ranking docked molecules, but also those with mediocre and poor scores. Overall, 127 compounds with binding affinities superior to 1 μM were identified, all in new chemotypes, 31 of which had affinities superior to 50 nM. Intriguingly, hit rate fell smoothly and monotonically with docking score. Seeking to develop selective and biologically active probe molecules, we optimized three of the original docking hits for potency and for selectivity, achieving affinities in the 3 to 48 nM range and to up to 250-fold selectivity vs. the σ 1 receptor. Crystal structures of the newly discovered ligands bound to the σ 2 receptor were subsequently determined, confirming the docked poses. To investigate the contribution of the σ 2 receptor in pain processing, and to distinguish it from the contribution of the σ 1 receptor, two potent σ 2 -selective and one potent σ 1 /σ 2 non-selective ligand were tested for efficacy in a mouse model of neuropathic pain. All three ligands demonstrated timedependent decreases in mechanical hypersensitivity in the spared nerve injury model, supporting a role for the σ 2 receptor in nociception, and a possible role for σ 1 /σ 2 polypharmacology. This study illustrates the opportunities for rapid discovery of in vivo active and selective probes to study under-explored areas of biology using structurebased screens of diverse, ultra-large libraries following the elucidation of protein structures.
114

Phospholipidosis is a shared mechanism underlying thein vitroantiviral activity of many repurposed drugs against SARS-CoV-2

Tia Tummino et al.Oct 24, 2023
+20
B
V
T
Repurposing drugs as treatments for COVID-19 has drawn much attention. A common strategy has been to screen for established drugs, typically developed for other indications, that are antiviral in cells or organisms. Intriguingly, most of the drugs that have emerged from these campaigns, though diverse in structure, share a common physical property: cationic amphiphilicity. Provoked by the similarity of these repurposed drugs to those inducing phospholipidosis, a well-known drug side effect, we investigated phospholipidosis as a mechanism for antiviral activity. We tested 23 cationic amphiphilic drugs-including those from phenotypic screens and others that we ourselves had found-for induction of phospholipidosis in cell culture. We found that most of the repurposed drugs, which included hydroxychloroquine, azithromycin, amiodarone, and four others that have already progressed to clinical trials, induced phospholipidosis in the same concentration range as their antiviral activity; indeed, there was a strong monotonic correlation between antiviral efficacy and the magnitude of the phospholipidosis. Conversely, drugs active against the same targets that did not induce phospholipidosis were not antiviral. Phospholipidosis depends on the gross physical properties of drugs, and does not reflect specific target-based activities, rather it may be considered a confound in early drug discovery. Understanding its role in infection, and detecting its effects rapidly, will allow the community to better distinguish between drugs and lead compounds that more directly impact COVID-19 from the large proportion of molecules that manifest this confounding effect, saving much time, effort and cost.
114
Citation5
0
Save
1

Allosteric activation of cell wall synthesis during bacterial growth

Irina Shlosman et al.Oct 24, 2023
+5
M
E
I
Summary The peptidoglycan (PG) cell wall protects bacteria against osmotic lysis and determines cell shape, making this structure a key antibiotic target. Peptidoglycan is a polymer of glycan chains connected by peptide crosslinks, and its synthesis requires precise spatiotemporal coordination between glycan polymerization and crosslinking. However, the molecular mechanism by which these reactions are initiated and coupled is unclear. Here we use single-molecule FRET and cryo-EM to show that an essential PG synthase (RodA-PBP2) responsible for bacterial elongation undergoes dynamic exchange between closed and open states. Structural opening couples the activation of polymerization and crosslinking and is essential in vivo. Given the high conservation of this family of synthases, the opening motion that we uncovered likely represents a conserved regulatory mechanism that controls activation of PG synthesis during other cellular processes, including cell division.
1
Citation5
0
Save
23

The relaxin receptor RXFP1 signals through a mechanism of autoinhibition

Sarah Erlandson et al.Oct 24, 2023
+8
J
S
S
Abstract The relaxin family peptide receptor 1 (RXFP1) is the receptor for relaxin-2, an important regulator of reproductive and cardiovascular physiology. RXFP1 is a multi-domain G protein-coupled receptor (GPCR) with an ectodomain consisting of an LDLa module and leucine-rich repeats. The mechanism of RXFP1 signal transduction is clearly distinct from that of other GPCRs, but remains very poorly understood. Here, we present the cryo-electron microscopy structure of active-state human RXFP1, bound to a single-chain version of the endogenous agonist relaxin-2 and to the heterotrimeric G s protein. Evolutionary coupling analysis and structure-guided functional experiments reveal that RXFP1 signals through a mechanism of autoinhibition, wherein the receptor’s extracellular loop 2 occupies the orthosteric site in the active state but is inhibited by the ectodomain in the absence of relaxin-2. Our results explain how an unusual GPCR family functions, providing a path to rational drug development targeting the relaxin receptors.
23
Paper
Citation3
0
Save
17

An in silico method to assess antibody fragment polyreactivity

Edward Harvey et al.Oct 24, 2023
+9
M
J
E
ABSTRACT Antibodies are essential biological research tools and important therapeutic agents, but some exhibit non-specific binding to off-target proteins and other biomolecules. Such polyreactive antibodies compromise screening pipelines, lead to incorrect and irreproducible experimental results, and are generally intractable for clinical development. We designed a set of experiments using a diverse naïve synthetic camelid antibody fragment (‘nanobody’) library to enable machine learning models to accurately assess polyreactivity from protein sequence (AUC > 0.8). Moreover, our models provide quantitative scoring metrics that predict the effect of amino acid substitutions on polyreactivity. We experimentally tested our model’s performance on three independent nanobody scaffolds, where over 90% of predicted substitutions successfully reduced polyreactivity. Importantly, the model allowed us to diminish the polyreactivity of an angiotensin II type I receptor antagonist nanobody, without compromising its pharmacological properties. We provide a companion web-server that offers a straightforward means of predicting polyreactivity and polyreactivity-reducing mutations for any given nanobody sequence.
17
Citation2
0
Save
0

Platform for rapid nanobody discovery in vitro

Conor McMahon et al.May 6, 2020
+7
S
A
C
Abstract Camelid single-domain antibody fragments (“nanobodies”) provide the remarkable specificity of antibodies within a single immunoglobulin V HH domain. This unique feature enables applications ranging from their use as biochemical tools to therapeutic agents. Virtually all nanobodies reported to date have been obtained by animal immunization, a bottleneck restricting many applications of this technology. To solve this problem, we developed a fully in vitro platform for nanobody discovery based on yeast surface display of a synthetic nanobody scaffold. This platform provides a facile and cost-effective method for rapidly isolating nanobodies targeting a diverse range of antigens. We provide a blueprint for identifying nanobodies starting from both purified and non-purified antigens, and in addition, we demonstrate application of the platform to discover rare conformationally-selective nanobodies to a lipid flippase and a G protein-coupled receptor. To facilitate broad deployment of this platform, we have made the library and all associated protocols publicly available.
2

Engineering and characterization of a long half-life relaxin receptor RXFP1 agonist

Sarah Erlandson et al.Oct 24, 2023
+2
H
J
S
Abstract Relaxin-2 is a peptide hormone with important roles in human cardiovascular and reproductive biology. Its ability to activate cellular responses such as vasodilation, angiogenesis, and anti-inflammatory and anti-fibrotic effects have led to significant interest in using relaxin-2 as a therapeutic for heart failure and several fibrotic conditions. However, recombinant relaxin-2 has a very short serum half-life, limiting its clinical applications. Here we present protein engineering efforts targeting the relaxin-2 hormone in order to increase its serum half-life, while maintaining its ability to activate the G protein-coupled receptor RXFP1. To achieve this, we optimized a fusion between relaxin-2 and an antibody Fc fragment, generating a version of the hormone with a circulating half-life of up to five days in mice while retaining potent agonist activity at the RXFP1 receptor both in vitro and in vivo .
2
Paper
Citation2
0
Save
30

A Spatiotemporal Map of Co-Receptor Signaling Networks Underlying B Cell Activation

Katherine Susa et al.Oct 24, 2023
+4
R
G
K
The B cell receptor (BCR) signals together with a multi-component co-receptor complex to initiate B cell activation in response to antigen binding. This process underlies nearly every aspect of proper B cell function. Here, we take advantage of peroxidase-catalyzed proximity labeling combined with quantitative mass spectrometry to track B cell co-receptor signaling dynamics from 10 seconds to 2 hours after BCR stimulation. This approach enables tracking of 2,814 proximity-labeled proteins and 1,394 quantified phosphosites and provides an unbiased and quantitative molecular map of proteins recruited to the vicinity of CD19, the key signaling subunit of the co-receptor complex. We detail the recruitment kinetics of essential signaling effectors to CD19 following activation, and then identify new mediators of B cell activation. In particular, we show that the glutamate transporter SLC1A1 is responsible for mediating rapid metabolic reprogramming immediately downstream of BCR stimulation and for maintaining redox homeostasis during B cell activation. This study provides a comprehensive map of the BCR signaling pathway and a rich resource for uncovering the complex signaling networks that regulate B cell activation.
0

Accelerating Protein Design Using Autoregressive Generative Models

Jung-Eun Shin et al.May 6, 2020
+6
A
A
J
A major biomedical challenge is the interpretation of genetic variation and the ability to design functional novel sequences. Since the space of all possible genetic variation is enormous, there is a concerted effort to develop reliable methods that can capture genotype to phenotype maps. State-of-art computational methods rely on models that leverage evolutionary information and capture complex interactions between residues. However, current methods are not suitable for a large number of important applications because they depend on robust protein or RNA alignments. Such applications include genetic variants with insertions and deletions, disordered proteins, and functional antibodies. Ideally, we need models that do not rely on assumptions made by multiple sequence alignments. Here we borrow from recent advances in natural language processing and speech synthesis to develop a generative deep neural network-powered autoregressive model for biological sequences that captures functional constraints without relying on an explicit alignment structure. Application to unseen experimental measurements of 43 deep mutational scans predicts the effect of insertions and deletions while matching state-of-art missense mutation prediction accuracies. We then test the model on single domain antibodies, or nanobodies, a complex target for alignment-based models due to the highly variable complementarity determining regions. We fit the model to a naïve llama immune repertoire and generate a diverse, optimized library of 105 nanobody sequences for experimental validation. Our results demonstrate the power of the 'alignment-free' autoregressive model in mutation effect prediction and design of traditionally challenging sequence families.
1

Metal cofactor stabilization by a partner protein is a widespread strategy employed for amidase activation

Julia Page et al.Oct 24, 2023
+2
T
M
J
ABSTRACT Construction and remodeling of the bacterial peptidoglycan (PG) cell wall must be carefully coordinated with cell growth and division. Central to cell wall construction are hydrolases that cleave bonds in peptidoglycan. These enzymes also represent potential new antibiotic targets. One such hydrolase, the amidase LytH in Staphylococcus aureus , acts to remove stem peptides from PG, controlling where substrates are available for insertion of new PG strands and consequently regulating cell size. When it is absent, cells grow excessively large and have division defects. For activity, LytH requires a protein partner, ActH, that consists of an intracellular domain, a large rhomboid protease domain, and three extracellular tetratricopeptide repeats (TPRs). Here we demonstrate that the amidase-activating function of ActH is entirely contained in its extracellular TPRs. We show that ActH binding stabilizes metals in the LytH active site, and that LytH metal binding in turn is needed for stable complexation with ActH. We further present a structure of a complex of the extracellular domains of LytH and ActH. Our findings suggest that metal cofactor stabilization is a general strategy used by amidase activators and that ActH houses multiple functions within a single protein. SIGNIFICANCE STATEMENT The Gram-positive pathogen Staphylococcus aureus is a leading cause of antibiotic resistance-associated death in the United States. Many antibiotics used to treat S. aureus , including the beta-lactams, target biogenesis of the essential peptidoglycan (PG) cell wall. Some hydrolases play important roles in cell wall construction and are potential antibiotic targets. The amidase LytH, which requires a protein partner, ActH, for activity, is one such hydrolase. Here, we uncover how the extracellular domain of ActH binds to LytH to stabilize metals in the active site for catalysis. This work advances our understanding of how hydrolase activity is controlled to contribute productively to cell wall synthesis.
Load More