AH
Anthony Hyman
Author with expertise in Regulation of RNA Processing and Function
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(100% Open Access)
Cited by:
247
h-index:
109
/
i10-index:
180
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Diverse transcription factor binding features revealed by genome-wide ChIP-seq in C. elegans

Wei Niu et al.Dec 22, 2010
Regulation of gene expression by sequence-specific transcription factors is central to developmental programs and depends on the binding of transcription factors with target sites in the genome. To date, most such analyses in Caenorhabditis elegans have focused on the interactions between a single transcription factor with one or a few select target genes. As part of the modENCODE Consortium, we have used chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq) to determine the genome-wide binding sites of 22 transcription factors (ALR-1, BLMP-1, CEH-14, CEH-30, EGL-27, EGL-5, ELT-3, EOR-1, GEI-11, HLH-1, LIN-11, LIN-13, LIN-15B, LIN-39, MAB-5, MDL-1, MEP-1, PES-1, PHA-4, PQM-1, SKN-1, and UNC-130) at diverse developmental stages. For each factor we determined candidate gene targets, both coding and non-coding. The typical binding sites of almost all factors are within a few hundred nucleotides of the transcript start site. Most factors target a mixture of coding and non-coding target genes, although one factor preferentially binds to non-coding RNA genes. We built a regulatory network among the 22 factors to determine their functional relationships to each other and found that some factors appear to act preferentially as regulators and others as target genes. Examination of the binding targets of three related HOX factors--LIN-39, MAB-5, and EGL-5--indicates that these factors regulate genes involved in cellular migration, neuronal function, and vulval differentiation, consistent with their known roles in these developmental processes. Ultimately, the comprehensive mapping of transcription factor binding sites will identify features of transcriptional networks that regulate C. elegans developmental processes.
0
Citation223
0
Save
53

Phase separating RNA binding proteins form heterogeneous distributions of clusters in subsaturated solutions

Mrityunjoy Kar et al.Feb 3, 2022
Abstract Macromolecular phase separation is thought to be one of the processes that drives the formation of membraneless biomolecular condensates in cells. The dynamics of phase separation, especially at low endogenous concentrations found in cells, are thought to follow the tenets of classical nucleation theory describing a sharp transition between a dense phase and a dilute phase characterized by dispersed monomers. Here, we used in vitro biophysical studies to study subsaturated solutions of phase separating RNA binding proteins with intrinsically disordered prion like domains (PLDs) and RNA binding domains (RBDs). Surprisingly, we find that subsaturated solutions are characterized by heterogeneous distributions of clusters comprising tens to hundreds of molecules. These clusters also include low abundance mesoscale species that are several hundreds of nanometers in diameter. Our results show that cluster formation in subsaturated solutions and phase separation in supersaturated solutions are strongly coupled via sequence-encoded interactions. Interestingly, however, cluster formation and phase separation can be decoupled from one another using solutes that impact the solubilities of phase separating proteins. They can also be decoupled by specific types of mutations. Overall, our findings implicate the presence of distinct, sequence-specific energy scales that contribute to the overall phase behaviors of RNA binding proteins. We discuss our findings in the context of theories of associative polymers. Significance Statement Membraneless biomolecular condensates are molecular communities with distinct compositional preferences and functions. Considerable attention has focused on phase separation as the process that gives rise to condensates. Here, we show that subsaturated solutions of RNA binding proteins form heterogeneous distributions of clusters in subsaturated solutions. The formation of clusters in subsaturated solutions and condensates in supersaturated solution are coupled through sequence-specific interactions. Given the low endogenous concentrations of phase separating proteins, our findings suggest that clusters in subsaturated conditions might be of functional relevance in cells.
53
Citation11
0
Save
0

Biomolecular condensates sustain pH gradients at equilibrium driven by charge neutralisation

Hannes Ausserwöger et al.May 23, 2024
Abstract Electrochemical gradients are essential to the functioning of cells and are typically formed across membranes using active transporters and require energy input to maintain them. Here, we show by contrast that biomolecular condensates are able to sustain significant pH gradients without any external energy input. We explore the thermodynamic driving forces that establish this gradient using a microfluidics-based droplet platform that allows us to sample in a continuous manner both the stability and composition of the condensates across a wide pH range. These results reveal that condensed biomolecular systems adjust the pH of the dense phase towards the isoelectric point (pI) of the component polypeptide chains. We demonstrate, on the basis of two representative systems, FUS and PGL3, that condensates can create both alkaline and acidic gradients with a magnitude exceeding one pH unit. Investigations of multicomponent protein/nucleic acid systems further show that heterotypic interactions can modulate condensate pH gradients. We further investigate using a bioinformatics approach the diversity of electrochemical properties of complex condensates by studying a large set of human condensate networks, showing that these span a wide range of mixture pIs and pH-response behaviours. In summary, our results reveal that protein condensation may present a fundamental physico-chemical mechanism for the effective segregation and optimisation of functional processes through changes in the emergent electrochemical microenvironment.
0
Citation3
0
Save
1

Glutamate helps unmask the differences in driving forces for phase separation versus clustering of FET family proteins in sub-saturated solutions

Mrityunjoy Kar et al.Aug 13, 2023
Multivalent proteins undergo coupled segregative and associative phase transitions. Phase separation, a segregative transition, is driven by macromolecular solubility, and this leads to coexisting phases above system-specific saturation concentrations. Percolation is a continuous transition that is driven by multivalent associations among cohesive motifs. Contributions from percolation are highlighted by the formation of heterogeneous distributions of clusters in sub-saturated solutions, as was recently reported for Fused in sarcoma (FUS) and FET family proteins. Here, we show that clustering and phase separation are defined by a separation of length- and energy-scales. This is unmasked when glutamate is the primary solution anion. Glutamate is preferentially excluded from protein sites, and this enhances molecular associations. Differences between glutamate and chloride are manifest at ultra-low protein concentrations. These differences are amplified as concentrations increase, and they saturate as the micron-scale is approached. Therefore, condensate formation in supersaturated solutions and clustering in sub-saturated are governed by distinct energy and length scales. Glutamate, unlike chloride, is the dominant intracellular anion, and the separation of scales, which is masked in chloride, is unmasked in glutamate. Our work highlights how components of cellular milieus and sequence-encoded interactions contribute to amplifying distinct contributions from associative versus segregative phase transitions.
1
Citation2
0
Save
5

Different low-complexity regions of SFPQ play distinct roles in the formation of biomolecular condensates

A.C. Marshall et al.Nov 30, 2022
ABSTRACT Demixing of proteins and nucleic acids into condensed liquid phases is rapidly emerging as a ubiquitous mechanism governing the organisation of molecules within the cell. Long disordered low complexity regions (LCRs) are a common feature of proteins that form biomolecular condensates. RNA-binding proteins with prion-like composition have been highlighted as drivers of liquid demixing to form condensates such as nucleoli, paraspeckles and stress granules. Splicing factor proline- and glutamine-rich (SFPQ) is an RNA- and DNA-binding protein essential for DNA repair and paraspeckle formation. Here, we show that the shorter C-terminal LCR of SFPQ is the main region responsible for the condensation of SFPQ in vitro and in the cell. In contrast, we find that, unexpectedly, the longer N-terminal prion-like LCR of SFPQ attenuates condensation, suggesting a more regulatory role in preventing aberrant condensate formation in the cell. Our data add nuance to the emerging understanding of biomolecular condensate formation, by providing the first example of a common multifunctional nucleic acid-binding protein with an extensive prion-like region that serves to regulate rather than drive condensate formation. Graphical Abstract
5
Citation2
0
Save
5

A conserved role of Parkinson-associated DJ-1 metabolites in sperm motility, mitosis, and embryonic development

Susanne Bour et al.Jan 17, 2021
Abstract Fertility rates in the developing world have dramatically dropped in the last decades. This drop is likely due to a decline in sperm quality and women having children at older ages. Loss of function mutations in DJ-1 , a Parkinson’s associated gene, are linked to alterations in multiple cellular processes such as mitochondrial activity, ROS production or sperm motility and lead to an early onset of Parkinson’s disease and male infertility in humans and other species. Glycolate (GA) and D-lactate (DL), products of DJ-1 glyoxalase activity, sustain mitochondrial function and protect against environmental aggressions. We, therefore, tested whether these substances could also have a rescue effect on these phenotypes. Here, we show that DJ-1 loss of function not only affects sperm motility but also leads to defects in mitosis and an age-dependent increase in the abortion rate. Remarkably, whereas DL was only able to rescue embryonic lethality in C. elegans , GA rescued these phenotypes in all model systems tested and even increased sperm motility in wild-type sperm. These positive effects seem to be mediated through an increase in NAD(P)H production and the regulation of intracellular calcium. These findings not only strongly suggest GA as a new therapeutic candidate to improve male and female fertility but also show its potential to treat diseases associated with a decline in mitochondrial function or to improve mitochondrial function in aging.
1

Quantifying collective interactions in biomolecular phase separation

Hannes Ausserwöger et al.Jun 3, 2023
Abstract Biomolecular phase separation plays a pivotal role in governing critical biological functions and arises from the collective interactions of large numbers of molecules. Characterising the underlying collective interactions of phase separation, however, has proven to be challenging with currently available tools. Here, we propose a general and easily accessible strategy to quantify collective interactions in biomolecular phase separation with respect to composition and energetics. By measuring the dilute phase concentration of one species only, we determine tie line gradients and free energy dominance as dedicated descriptors of collective interactions. We apply this strategy to dissect the role of salts and small molecules on phase separation of the protein fused in sarcoma (FUS). We discover that monovalent salts can display both exclusion from or preferential partitioning into condensates to either counteract charge screening or enhance non-ionic interactions. Moreover, we show that the common hydrophobic interaction disruptor 1,6-hexanediol inhibits FUS phase separation by acting as a solvation agent capable of expanding the protein polypeptide chain. Taken together, our work presents a widely applicable strategy that enables quantification of collective interactions and provides unique insights into the underlying mechanisms of condensate formation and modulation.
1

Local and dynamic regulation of neuronal glycolysis in vivo

Aaron Wolfe et al.Aug 26, 2023
Abstract Energy metabolism supports neuronal function. While it is well established that changes in energy metabolism underpin brain plasticity and function, less is known about how individual neurons modulate their metabolic states to meet varying energy demands. This is because most approaches used to examine metabolism in living organisms lack the resolution to visualize energy metabolism within individual circuits, cells, or subcellular regions. Here we adapted a biosensor for glycolysis, HYlight, for use in C. elegans to image dynamic changes in glycolysis within individual neurons and in vivo . We determined that neurons perform glycolysis cell-autonomously, and modulate glycolytic states upon energy stress. By examining glycolysis in specific neurons, we documented a neuronal energy landscape comprising three general observations: 1) glycolytic states in neurons are diverse across individual cell types; 2) for a given condition, glycolytic states within individual neurons are reproducible across animals; and 3) for varying conditions of energy stress, glycolytic states are plastic and adapt to energy demands. Through genetic analyses, we uncovered roles for regulatory enzymes and mitochondrial localization in the cellular and subcellular dynamic regulation of glycolysis. Our study demonstrates the use of a single-cell glycolytic biosensor to examine how energy metabolism is distributed across cells and coupled to dynamic states of neuronal function, and uncovers new relationships between neuronal identities and metabolic landscapes in vivo . Significance statement While it is generally accepted that energy metabolism underpins neuronal function, how it is distributed and dynamically regulated in different tissues of the brain to meet varying energy demands is not well understood. Here we utilized a fluorescent biosensor, HYlight, to observe glycolytic metabolism at cellular and subcellular scales in vivo . By leveraging both the stereotyped identities of individual neurons in C. elegans, and genetic tools for manipulating glycolytic metabolism, we determined that neurons perform and dynamically regulate glycolysis to match changing cellular demands for energy. Our findings support a model whereby glycolytic states should be considered distinct and related to individual neuron identities in vivo , and introduce new questions about the interconnected nature of metabolism and neuronal function.
Load More