RB
Robert Bortz
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
628
h-index:
13
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
11

A combination of RBD and NTD neutralizing antibodies limits the generation of SARS-CoV-2 spike neutralization-escape mutants

Denise Haslwanter et al.Jun 11, 2021
Abstract Most known SARS-CoV-2 neutralizing antibodies (nAbs), including those approved by the FDA for emergency use, inhibit viral infection by targeting the receptor-binding domain (RBD) of the spike (S) protein. Variants of concern (VOC) carrying mutations in the RBD or other regions of S reduce the effectiveness of many nAbs and vaccines by evading neutralization. Therefore, therapies that are less susceptible to resistance are urgently needed. Here, we characterized the memory B-cell repertoire of COVID-19 convalescent donors and analyzed their RBD and non-RBD nAbs. We found that many of the non-RBD-targeting nAbs were specific to the N-terminal domain (NTD). Using neutralization assays with authentic SARS-CoV-2 and a recombinant vesicular stomatitis virus carrying SARS-CoV-2 S protein (rVSV-SARS2), we defined a panel of potent RBD and NTD nAbs. Next, we used a combination of neutralization-escape rVSV-SARS2 mutants and a yeast display library of RBD mutants to map their epitopes. The most potent RBD nAb competed with hACE2 binding and targeted an epitope that includes residue F490. The most potent NTD nAb epitope included Y145, K150 and W152. As seen with some of the natural VOC, the neutralization potencies of COVID-19 convalescent sera were reduced by 4-16-fold against rVSV-SARS2 bearing Y145D, K150E or W152R spike mutations. Moreover, we found that combining RBD and NTD nAbs modestly enhanced their neutralization potential. Notably, the same combination of RBD and NTD nAbs limited the development of neutralization-escape mutants in vitro , suggesting such a strategy may have higher efficacy and utility for mitigating the emergence of VOC. Importance The US FDA has issued emergency use authorizations (EUAs) for multiple investigational monoclonal antibody (mAb) therapies for the treatment of mild to moderate COVID-19. These mAb therapeutics are solely targeting the receptor binding domain of the SARS-CoV-2 spike protein. However, the N-terminal domain of the spike protein also carries crucial neutralizing epitopes. Here, we show that key mutations in the N-terminal domain can reduce the neutralizing capacity of convalescent COVID-19 sera. We report that a combination of two neutralizing antibodies targeting the receptor binding and N-terminal domains may have higher efficacy and is beneficial to combat the emergence of virus variants.
11
Citation4
0
Save
7

A glycoprotein mutation that emerged during the 2013-2016 Ebola virus epidemic alters proteolysis and accelerates membrane fusion

J. Fels et al.Jul 15, 2020
Abstract Genomic surveillance of viral isolates during the 2013-2016 Ebola virus epidemic in Western Africa—the largest and most devastating filovirus outbreak on record—revealed several novel mutations. The responsible strain, named Makona, carries an A to V substitution at position 82 in the glycoprotein (GP), which is associated with enhanced infectivity in vitro . Here, we investigated the mechanistic basis for this enhancement, as well as the interplay between A82V and a T to I substitution at residue 544 of GP, which also modulates infectivity in cell culture. We found that both 82V and 544I destabilize GP with the residue at 544 impacting overall stability, while 82V specifically destabilizes proteolytically cleaved GP. Both residues also promote faster kinetics of lipid mixing of the viral and host membranes in live cells, individually and in tandem, which correlates with faster times to fusion following co-localization with the viral receptor Niemann-Pick C1 (NPC1). Further, GPs bearing 82V are more sensitive to proteolysis by cathepsin L (CatL), a key host factor for viral entry. Intriguingly, CatL processed 82V variant GPs to a novel product of ∼12K size, which we hypothesize corresponds to a form of GP more fully primed for fusion than previously detected. We thus propose a model in which 82V promotes more efficient GP processing by CatL, leading to faster viral fusion kinetics and higher infectivity. Importance The 2013-2016 outbreak of Ebola virus disease in West Africa demonstrated the potential for previously localized outbreaks to turn into regional, or even global, health emergencies. With over 28,000 cases and 11,000 confirmed deaths, this outbreak was over 50 times as large as any previously recorded. This outbreak also afforded the largest ever collection of Ebola virus genomic sequence data, allowing new insights into viral transmission and evolution. Viral mutants arising during the outbreak have attracted attention for their potentially altered patterns of infectivity in cell culture, with potential, if unclear, implications for increased viral spread and/or virulence. Here, we report on the properties of one such mutation in the viral glycoprotein, A82V, and its interplay with a previously described polymorphism at position 544. We show that mutations at both residues promote infection and fusion activation in cells, but that A82V additionally leads to increased infectivity under cathepsin-limited conditions, and the generation of a novel glycoprotein cleavage product.
7
Citation3
0
Save
0

Human antibody cocktail deploys multiple functions to confer pan-ebolavirus protection

Anna Wec et al.Aug 20, 2018
During the unprecedented 2013-2016 Ebola virus disease (EVD) epidemic in Western Africa and in its aftermath, the passive administration of monoclonal antibodies (mAbs) emerged as a promising treatment approach. However, all antibody-based therapeutics currently in advanced development are specific for a single member of the Ebolavirus genus, Ebola virus (EBOV), and ineffective against divergent outbreak-causing ebolaviruses, including Bundibugyo virus (BDBV) and Sudan virus (SUDV). Here we advance MBP134, a cocktail of two broadly neutralizing human mAbs targeting the filovirus surface glycoprotein, GP, as a candidate pan-ebolavirus therapeutic. One component of this cocktail is a pan-ebolavirus neutralizing mAb, ADI-15878, isolated from a human EVD survivor. The second, ADI-23774, was derived by affinity maturation of a human mAb via yeast display to enhance its potency against SUDV. MBP134 afforded exceptionally potent pan-ebolavirus neutralization in vitro and demonstrated greater protective efficacy than ADI-15878 alone in the guinea pig model of lethal EBOV challenge. A second-generation cocktail, MBP134-AF, engineered to effectively harness natural killer (NK) cells afforded additional, unprecedented improvements in protective efficacy against EBOV and SUDV in guinea pigs relative to both its precursor and to any mAbs or mAb cocktails tested previously. MBP134 AF is a best-in-class mAb cocktail suitable for evaluation as a pan-ebolavirus therapeutic in nonhuman primates.
0

A virion-based assay for glycoprotein thermostability reveals key determinants of filovirus entry and its inhibition

Robert Bortz et al.Feb 26, 2020
Ebola virus (EBOV) entry into cells is mediated by its spike glycoprotein (GP). Following attachment and internalization, virions traffic to late endosomes where GP is cleaved by host cysteine proteases. Cleaved GP then binds its cellular receptor, Niemann-Pick C1. In response to an unknown cellular trigger, GP undergoes conformational rearrangements that drive fusion of viral and endosomal membranes. The temperature-dependent stability (thermostability) of the pre-fusion conformers of 'Class I' viral fusion glycoproteins, including those of filovirus GPs, has provided insights into their propensity to undergo fusion-related rearrangements. However, previously described assays have relied on soluble glycoprotein ectodomains. Here, we developed a simple ELISA-based assay that uses the temperature-dependent loss of conformational epitopes to measure thermostability of GP embedded in viral membranes. The base and glycan cap subdomains of all filovirus GPs tested suffered a concerted loss of pre-fusion conformation at elevated temperatures, but did so at different temperature ranges, indicating virus-specific differences in thermostability. Despite these differences, all of these GPs displayed reduced thermostability upon cleavage to GPCL. Surprisingly, acid pH enhanced, rather than decreased, GP thermostability, suggesting it could enhance viral survival in hostile endo/lysosomal compartments. Finally, we confirmed and extended previous findings that some small-molecule inhibitors of filovirus entry destabilize EBOV GP and uncovered evidence that the most potent inhibitors act through multiple mechanisms. We establish the epitope-loss ELISA as a useful tool for studies of filovirus entry, engineering of GP variants with enhanced stability for use in vaccine development, and discovery of new stability-modulating antivirals.