The development of sequencing technologies has promoted the survey of genome-wide chromatin accessibility at single-cell resolution; however, comprehensive analysis of single-cell epigenomic profiles remains a challenge. Here, we introduce an accessibility pattern-based epigenomic clustering (APEC) method, which classifies each individual cell by groups of accessible regions with synergistic signal patterns termed “accessons”. By integrating with other analytical tools, this python-based APEC package greatly improves the accuracy of unsupervised single-cell clustering for many different public data sets. APEC also predicts gene expressions, identifies significant differential enriched motifs, discovers super enhancers, and projects pseudotime trajectories. Furthermore, we adopted a fluorescent tagmentation-based single-cell ATAC-seq technique (ftATAC-seq) to investigated the per cell regulome dynamics of mouse thymocytes. Associated with ftATAC-seq, APEC revealed a detailed epigenomic heterogeneity of thymocytes, characterized the developmental trajectory and predicted the regulators that control the stages of maturation process. Overall, this work illustrates a powerful approach to study single-cell epigenomic heterogeneity and regulome dynamics.