NE
Noel Ellis
Author with expertise in Genomics and Breeding of Legume Crops
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(89% Open Access)
Cited by:
1,288
h-index:
57
/
i10-index:
125
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Estimating genome conservation between crop and model legume species

Hong Choi et al.Oct 15, 2004
Legumes are simultaneously one of the largest families of crop plants and a cornerstone in the biological nitrogen cycle. We combined molecular and phylogenetic analyses to evaluate genome conservation both within and between the two major clades of crop legumes. Genetic mapping of orthologous genes identifies broad conservation of genome macrostructure, especially within the galegoid legumes, while also highlighting inferred chromosomal rearrangements that may underlie the variation in chromosome number between these species. As a complement to comparative genetic mapping, we compared sequenced regions of the model legume Medicago truncatula with those of the diploid Lotus japonicus and the polyploid Glycine max . High conservation was observed between the genomes of M. truncatula and L. japonicus , whereas lower levels of conservation were evident between M. truncatula and G. max . In all cases, conserved genome microstructure was punctuated by significant structural divergence, including frequent insertion/deletion of individual genes or groups of genes and lineage-specific expansion/contraction of gene families. These results suggest that comparative mapping may have considerable utility for basic and applied research in the legumes, although its predictive value is likely to be tempered by phylogenetic distance and genome duplication.
0
Citation471
0
Save
0

afila, the origin and nature of a major innovation in the history of pea breeding

Nadim Tayeh et al.Jun 5, 2024
Summary The afila ( af ) mutation causes the replacement of leaflets by a branched mass of tendrils in the compound leaves of pea – Pisum sativum L. This mutation was first described in 1953, and several reports of spontaneous af mutations and induced mutants with a similar phenotype exist. Despite widespread introgression into breeding material, the nature of af and the origin of the alleles used remain unknown. Here, we combine comparative genomics with reverse genetic approaches to elucidate the genetic determinants of af . We also investigate haplotype diversity using a set of AfAf and afaf cultivars and breeding lines and molecular markers linked to seven consecutive genes. Our results show that deletion of two tandemly arranged genes encoding Q‐type Cys(2)His(2) zinc finger transcription factors, PsPALM1a and PsPALM1b , is responsible for the af phenotype in pea. Eight haplotypes were identified in the af ‐harbouring genomic region on chromosome 2. These haplotypes differ in the size of the deletion, covering more or less genes. Diversity at the af locus is valuable for crop improvement and sheds light on the history of pea breeding for improved standing ability. The results will be used to understand the function of PsPALM1a/b and to transfer the knowledge for innovation in related crops.
0
Citation1
0
Save
3

afila, the origin and nature of a major innovation in the history of pea breeding

Nadim Tayeh et al.Jul 19, 2023
Abstract The afila ( af ) mutation of Pisum sativum L. (pea) is characterised by leaves that are composed of a basal pair of stipules, a petiole and a branched mass of tendrils. These are bipinnate leaves in which the leaflet primordia are replaced by midrib-like, or terminal tendril, primordia. The phenotype was first reported as a spontaneous mutation in 1953, and several reports of spontaneously occurring af mutants and induced mutations have been published since then. Despite its wide-scale introgression to improve standing ability in combine-harvested dry pea crops, the molecular basis of af has remained unknown. Here, we show that the deletion of two tandemly-arrayed Q-type Cys(2)His(2)-zinc finger transcription factors, viz. PsPALM1a and PsPALM1b , is responsible for the af phenotype. Based on molecular evidence for the presence/absence of seven consecutive pea genes, we identified eight haplotypes in the genomic region of chromosome 2 that harbours af . These haplotypes differ in the presence or absence of PsPALM1a-b and close genes and in the size of the deletion. Representative cultivars and spontaneous or induced mutants were assigned to the different haplotypes. The hitherto unrecognised diversity at the af locus reveals highly rich, unexplored, potential for pea improvement and sheds light on the breeding history of pea. This knowledge can also be used to breed innovative cultivars in related crops.
0

Genomic and Genetic Insights into Mendel's Pea Genes

Cong Feng et al.Jun 3, 2024
ABSTRACT Pea, Pisum sativum , is an excellent model system through which Gregor Mendel established the foundational principles of inheritance. Surprisingly, till today, the molecular nature of the genetic differences underlying the seven pairs of contrasting traits that Mendel studied in detail remains partially understood. Here, we present a genomic and phenotypic variation map, coupled with haplotype-phenotype association analyses across a wide range of traits in a global Pisum diversity panel. We focus on a genomics-enabled genetic dissection of each of the seven traits Mendel studied, revealing many previously undescribed alleles for the four characterized genes, R , Le , I and A , and elucidating the gene identities and mutations for the remaining three uncharacterized traits. Notably, we identify: (1) a ca. 100kb deletion upstream of the Chlorophyll synthase ( ChlG ) gene, which generates aberrant transcripts and confers the yellow pod phenotype of gp mutants; (2) an in-frame premature stop codon mutation in a Dodeca-CLE41/44 signalling peptide which explains the parchmentless mutant phenotype corresponding to p ; and (3) a 5bp in-frame deletion in a CIK-like receptor kinase gene corresponding to the fasciated stem phenotype fa , which Mendel described in terms of flower position, and we postulate the existence of a Modifier of fa ( Mfa ) locus that masks this meristem defect. Mendel noted the pleiotropy of the a mutation, including inhibition of axil ring anthocyanin pigmentation, a trait we found to be controlled by allelic variants of the gene D within an R2R3-MYB gene cluster. Furthermore, we characterize and validate natural variation of a quantitative genetic locus governing both pod width and seed weight, characters that Mendel deemed were not sufficiently demarcated for his analyses. This study establishes a cornerstone for fundamental research, education in biology and genetics, and pea breeding practices.