EB
Evan Bardot
Author with expertise in Molecular Mechanisms of Cardiac Development and Regeneration
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
253
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis

Tim Lohoff et al.Sep 6, 2021
Abstract Molecular profiling of single cells has advanced our knowledge of the molecular basis of development. However, current approaches mostly rely on dissociating cells from tissues, thereby losing the crucial spatial context of regulatory processes. Here, we apply an image-based single-cell transcriptomics method, sequential fluorescence in situ hybridization (seqFISH), to detect mRNAs for 387 target genes in tissue sections of mouse embryos at the 8–12 somite stage. By integrating spatial context and multiplexed transcriptional measurements with two single-cell transcriptome atlases, we characterize cell types across the embryo and demonstrate that spatially resolved expression of genes not profiled by seqFISH can be imputed. We use this high-resolution spatial map to characterize fundamental steps in the patterning of the midbrain–hindbrain boundary (MHB) and the developing gut tube. We uncover axes of cell differentiation that are not apparent from single-cell RNA-sequencing (scRNA-seq) data, such as early dorsal–ventral separation of esophageal and tracheal progenitor populations in the gut tube. Our method provides an approach for studying cell fate decisions in complex tissues and development.
0
Citation227
0
Save
219

Highly multiplexed spatially resolved gene expression profiling of mouse organogenesis

Tim Lohoff et al.Nov 21, 2020
Abstract Transcriptional and epigenetic profiling of single-cells has advanced our knowledge of the molecular bases of gastrulation and early organogenesis. However, current approaches rely on dissociating cells from tissues, thereby losing the crucial spatial context that is necessary for understanding cell and tissue interactions during development. Here, we apply an image-based single-cell transcriptomics method, seqFISH, to simultaneously and precisely detect mRNA molecules for 387 selected target genes in 8-12 somite stage mouse embryo tissue sections. By integrating spatial context and highly multiplexed transcriptional measurements with two single-cell transcriptome atlases we accurately characterize cell types across the embryo and demonstrate how spatially-resolved expression of genes not profiled by seqFISH can be imputed. We use this high-resolution spatial map to characterize fundamental steps in the patterning of the midbrain-hindbrain boundary and the developing gut tube. Our spatial atlas uncovers axes of resolution that are not apparent from single-cell RNA sequencing data – for example, in the gut tube we observe early dorsal-ventral separation of esophageal and tracheal progenitor populations. In sum, by computationally integrating high-resolution spatially-resolved gene expression maps with single-cell genomics data, we provide a powerful new approach for studying how and when cell fate decisions are made during early mammalian development.
219
Citation26
0
Save
0

Notch Signaling Commits Mesoderm to the Cardiac Lineage

Evan Bardot et al.Feb 20, 2020
During development multiple progenitor populations contribute to the formation of the four-chambered heart and its diverse lineages. However, the underlying mechanisms that result in the specification of these progenitor populations are not yet fully understood. We have previously identified a population of cells that gives rise selectively to the heart ventricles but not the atria. Here, we have used this knowledge to transcriptionally profile subsets of cardiac mesoderm from the mouse embryo and have identified an enrichment for Notch signaling components in ventricular progenitors. Using directed differentiation of human pluripotent stem cells, we next investigated the role of Notch in cardiac mesoderm specification in a temporally controlled manner. We show that transient Notch induction in mesoderm increases cardiomyocyte differentiation efficiency, while maintaining cardiomyocytes in an immature state. Finally, our data suggest that Notch interacts with WNT to enhance commitment to the cardiac lineage. Overall, our findings support the notion that key signaling events during early heart development are critical for proper lineage specification and provide evidence for early roles of Notch and WNT during mouse and human heart development.