RN
Rahul Nelli
Author with expertise in Viral Diseases in Livestock and Poultry
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
28
h-index:
15
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1k

Multiple spillovers and onward transmission of SARS-CoV-2 in free-living and captive white-tailed deer

Suresh Kuchipudi et al.Nov 1, 2021
+14
M
R
S
Abstract Many animal species are susceptible to SARS-CoV-2 and could potentially act as reservoirs, yet transmission of the virus in non-human free-living animals has not been documented. White-tailed deer ( Odocoileus virginianus ), the predominant cervid in North America, are susceptible to SARS-CoV-2 infection, and experimentally infected fawns can transmit the virus. To test the hypothesis that SARS-CoV-2 may be circulating in deer, we tested 283 retropharyngeal lymph node (RPLN) samples collected from 151 free-living and 132 captive deer in Iowa from April 2020 through December of 2020 for the presence of SARS-CoV-2 RNA. Ninety-four of the 283 deer (33.2%; 95% CI: 28, 38.9) samples were positive for SARS-CoV-2 RNA as assessed by RT-PCR. Notably, between November 23, 2020 and January 10, 2021, 80 of 97 (82.5%; 95% CI 73.7, 88.8) RPLN samples had detectable SARS-CoV-2 RNA by RT-PCR. Whole genome sequencing of the 94 positive RPLN samples identified 12 SARS-CoV-2 lineages, with B.1.2 (n = 51; 54.5%), and B.1.311 ( n = 19; 20%) accounting for ~75% of all samples. The geographic distribution and nesting of clusters of deer and human lineages strongly suggest multiple zooanthroponotic spillover events and deer-to-deer transmission. The discovery of sylvatic and enzootic SARS-CoV-2 transmission in deer has important implications for the ecology and long-term persistence, as well as the potential for spillover to other animals and spillback into humans. These findings highlight an urgent need for a robust and proactive “One Health” approach to obtaining a better understanding of the ecology and evolution of SARS-CoV-2. One-Sentence Summary SARS-CoV-2 was detected in one-third of sampled white-tailed deer in Iowa between September 2020 and January of 2021 that likely resulted from multiple human-to-deer spillover and deer-to-deer transmission events.
1k
Paper
Citation19
0
Save
0

Sialic Acid Receptor Specificity in Mammary Gland of Dairy Cattle Infected with Highly Pathogenic Avian Influenza A(H5N1) Virus

Rahul Nelli et al.Jun 12, 2024
+11
C
T
R
In March 2024, the US Department of Agriculture's Animal and Plant Health Inspection Service reported detection of highly pathogenic avian influenza (HPAI) A(H5N1) virus in dairy cattle in the United States for the first time. One factor that determines susceptibility to HPAI H5N1 infection is the presence of specific virus receptors on host cells; however, little is known about the distribution of the sialic acid (SA) receptors in dairy cattle, particularly in mammary glands. We compared the distribution of SA receptors in the respiratory tract and mammary gland of dairy cattle naturally infected with HPAI H5N1. The respiratory and mammary glands of HPAI H5N1-infected dairy cattle are rich in SA, particularly avian influenza virus-specific SA α2,3-gal. Mammary gland tissues co-stained with sialic acids and influenza A virus nucleoprotein showed predominant co-localization with the virus and SA α2,3-gal. HPAI H5N1 exhibited epitheliotropism within the mammary gland, and we observed rare immunolabeling within macrophages.
0
Citation9
0
Save
0

Transcriptome Analysis in Air–Liquid Interface Porcine Respiratory Epithelial Cell Cultures Reveals That the Betacoronavirus Porcine Encephalomyelitis Hemagglutinating Virus Induces a Robust Interferon Response to Infection

Kaitlyn Davila et al.Jun 11, 2024
+3
J
R
K
Porcine hemagglutinating encephalomyelitis virus (PHEV) replicates in the upper respiratory tract and tonsils of pigs. Using an air–liquid interface porcine respiratory epithelial cells (ALI-PRECs) culture system, we demonstrated that PHEV disrupts respiratory epithelia homeostasis by impairing ciliary function and inducing antiviral, pro-inflammatory cytokine, and chemokine responses. This study explores the mechanisms driving early innate immune responses during PHEV infection through host transcriptome analysis. Total RNA was collected from ALI-PRECs at 24, 36, and 48 h post inoculation (hpi). RNA-seq analysis was performed using an Illumina Hiseq 600 to generate 100 bp paired-end reads. Differential gene expression was analyzed using DeSeq2. PHEV replicated actively in ALI-PRECs, causing cytopathic changes and progressive mucociliary disruption. Transcriptome analysis revealed downregulation of cilia-associated genes such as CILK1, DNAH11, LRRC-23, -49, and -51, and acidic sialomucin CD164L2. PHEV also activated antiviral signaling pathways, significantly increasing the expression of interferon-stimulated genes (RSAD2, MX1, IFIT, and ISG15) and chemokine genes (CCL5 and CXCL10), highlighting inflammatory regulation. This study contributes to elucidating the molecular mechanisms of the innate immune response to PHEV infection of the airway epithelium, emphasizing the critical roles of the mucociliary, interferon, and chemokine responses.
1

How Do Deer Respiratory Epithelial Cells Weather The Initial Storm of SARS-CoV-2?

Kaitlyn Davila et al.Apr 25, 2023
+5
L
R
K
ABSTRACT The potential infectivity of SARS-CoV-2 in animals raises a public health and economic concern, particularly the high susceptibility of white-tailed deer (WTD) to SARS-CoV-2. The disparity in the disease outcome between humans and WTD is very intriguing, as the latter are often asymptomatic, subclinical carriers of SARS-CoV-2. To date, no studies have evaluated the innate immune factors responsible for the contrasting SARS-CoV-2-associated disease outcomes in these mammalian species. A comparative transcriptomic analysis in primary respiratory epithelial cells of human (HRECs) and WTD (Deer-RECs) infected with SARS-CoV-2 was assessed throughout 48 hours post inoculation (hpi). Both HRECs and Deer-RECs were susceptible to SARS-COV-2, with significantly ( P < 0.001) lower virus replication in Deer-RECs. The number of differentially expressed genes (DEG) gradually increased in Deer-RECs but decreased in HRECs throughout the infection. The ingenuity pathway analysis of DEGs further identified that genes commonly altered during SARS-CoV-2 infection mainly belong to cytokine and chemokine response pathways mediated via IL-17 and NF-κB signaling pathways. Inhibition of the NF-κB signaling in the Deer-RECs pathway was predicted as early as 6 hpi. The findings from this study could explain the lack of clinical signs reported in WTD in response to SARS-CoV-2 infection as opposed to the severe clinical outcomes reported in humans. HIGHLIGHTS White-tailed deer primary respiratory epithelial cells are susceptible to SARS- CoV-2 without causing hyper cytokine gene expression. Downregulation of IL-17 and NF-κB signaling pathways after SARS-CoV-2 infection could be key to the regulated cytokine response in deer cells. Deer innate immune system could play a critical role in early antiviral and tissue repair response following SARS-CoV-2 infection.