SG
Sarthak Gupta
Author with expertise in Structure and Function of the Nuclear Pore Complex
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
29
h-index:
7
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
16

Extracellular vimentin as a target against SARS-CoV-2 host cell invasion

Łukasz Suprewicz et al.Jan 8, 2021
+13
S
M
Ł
Abstract Infection of human cells by pathogens, including SARS-CoV-2, typically proceeds by cell surface binding to a crucial receptor. In the case of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2) has been identified as a necessary receptor, but not all ACE2-expressing cells are equally infected, suggesting that other extracellular factors are involved in host cell invasion by SARS-CoV-2. Vimentin is an intermediate filament protein that is increasingly recognized as being present on the extracellular surface of a subset of cell types, where it can bind to and facilitate pathogens’ cellular uptake. Here, we present evidence that extracellular vimentin might act as a critical component of the SARS-CoV-2 spike protein-ACE2 complex in mediating SARS-CoV-2 cell entry. We demonstrate direct binding between vimentin and SARS-CoV-2 pseudovirus coated with the SARS-CoV-2 spike protein and show that antibodies against vimentin block in vitro SARS-CoV-2 pseudovirus infection of ACE2-expressing cells. Our results suggest new therapeutic strategies for preventing and slowing SARS-CoV-2 infection, focusing on targeting cell host surface vimentin.
16
Citation21
0
Save
13

Transcription regulates bleb formation and stability independent of nuclear rigidity

Isabel Berg et al.Nov 15, 2022
+8
S
M
I
Abstract Chromatin is an essential component of nuclear mechanical response and shape that maintains nuclear compartmentalization and function. The biophysical properties of chromatin alter nuclear shape and stability, but little is known about whether or how major genomic functions can impact the integrity of the nucleus. We hypothesized that transcription might affect cell nuclear shape and rupture through its effects on chromatin structure and dynamics. To test this idea, we inhibited transcription with the RNA polymerase II inhibitor alpha-amanitin in wild type cells and perturbed cells that present increased nuclear blebbing. Transcription inhibition suppresses nuclear blebbing for several cell types, nuclear perturbations, and transcription inhibitors. Furthermore, transcription is necessary for robust nuclear bleb formation, bleb stabilization, and bleb-based nuclear ruptures. These morphological effects appear to occur through a novel biophysical pathway, since transcription does not alter either chromatin histone modification state or nuclear rigidity, which typically control nuclear blebbing. We find that active/phosphorylated RNA pol II Ser5, marking transcription initiation, is enriched in nuclear blebs relative to DNA. Thus, transcription initiation is a hallmark of nuclear blebs. Polymer simulations suggest that motor activity within chromatin, such as that of RNA pol II, can generate active forces that deform the nuclear periphery, and that nuclear deformations depend on motor dynamics. Our data provide evidence that the genomic function of transcription impacts nuclear shape stability, and suggests a novel mechanism, separate and distinct from chromatin rigidity, for regulating large-scale nuclear shape and function.
13
Citation7
0
Save
0

Vimentin intermediate filaments mediate cell shape on visco-elastic substrates

Maxx Swoger et al.Sep 8, 2020
+3
E
S
M
Abstract The ability of cells to take and change shape is a fundamental feature underlying development, wound repair, and tissue maintenance. Central to this process is physical and signaling interactions between the three cytoskeletal polymeric networks: F-actin, microtubules, and intermediate filaments (IFs). Vimentin is an IF protein that is essential to the mechanical resilience of cells and regulates cross-talk amongst the cytoskeleton, but its role in how cells sense and respond to the surrounding extracellular matrix is largely unclear. To investigate vimentin’s role in substrate sensing, we designed polyacrylamide hydrogels that mimic the elastic and viscoelastic nature of in vivo tissues. Using wild-type and vimentin-null mouse embryonic fibroblasts, we show that vimentin enhances cell spreading on viscoelastic substrates, even though it has little effect in the limit of purely elastic substrates. Our results provide compelling evidence that the vimentin cytoskeletal network is a physical modulator of how cells sense and respond to mechanical properties of their extracellular environment.
0
Citation1
0
Save
7

How cells wrap around virus-like particles using extracellular filamentous protein structures

Sarthak Gupta et al.Jan 30, 2023
J
A
C
S
Nanoparticles, such as viruses, can enter cells via endocytosis. During endocytosis, the cell surface wraps around the nanoparticle to effectively eat it. Prior focus has been on how nanoparticle size and shape impacts endocytosis. However, inspired by the noted presence of extracellular vimentin affecting viral and bacteria uptake, as well as the structure of coronaviruses, we construct a computational model in which both the cell-like construct and the virus-like construct contain filamentous protein structures protruding from their surfaces. We then study the impact of these additional degrees of freedom on viral wrapping. We find that cells with an optimal density of filamentous extracellular components (ECCs) are more likely to be infected as they uptake the virus faster and use relatively less cell surface area per individual virus. At the optimal density, the cell surface folds around the virus, and folds are faster and more efficient at wrapping the virus than crumple-like wrapping. We also find that cell surface bending rigidity helps generate folds, as bending rigidity enhances force transmission across the surface. However, changing other mechanical parameters, such as the stretching stiffness of filamentous ECCs or virus spikes, can drive crumple-like formation of the cell surface. We conclude with the implications of our study on the evolutionary pressures of virus-like particles, with a particular focus on the cellular microenvironment that may include filamentous ECCs.
3

The role of vimentin-nuclear interactions in persistent cell motility through confined spaces

Sarthak Gupta et al.Mar 16, 2021
J
A
S
The ability of cells to move through small spaces depends on the mechanical properties of the cellular cytoskeleton and on nuclear deformability. In mammalian cells, the cytoskeleton is comprised of three interacting, semi-flexible polymer networks: actin, microtubules, and intermediate filaments (IF). Recent experiments of mouse embryonic fibroblasts with and without vimentin have shown that the IF vimentin plays a role in confined cell motility. We, therefore, develop a minimal model of cells moving through confined geometries that effectively includes all three types of cytoskeletal filaments with a cell consisting of an actomyosin cortex and a deformable cell nucleus and mechanical connections between the two cortices—the outer actomyosin one and the inner nuclear one. By decreasing the amount of vimentin, we find that the cell speed is typically faster for vimentin-null cells as compared to cells with vimentin. Vimentin-null cells also contain more deformed nuclei in confinement. Finally, vimentin affects nucleus positioning within the cell. By positing that as the nucleus position deviates further from the center of mass of the cell, microtubules become more oriented in a particular direction to enhance cell persistence or polarity, we show that vimentin-nulls are more persistent than vimentin-full cells. The enhanced persistence indicates that the vimentin-null cells are more subjugated by the confinement since their internal polarization mechanism that depends on cross-talk of the centrosome with the nucleus and other cytoskeletal connections is diminished. In other words, the vimentin-null cells rely more heavily on external cues. Our modeling results present a quantitative interpretation for recent experiments and have implications for understanding the role of vimentin in the epithelial-mesenchymal transition.