TB
Thomas Boothby
Author with expertise in Adaptations of Tardigrades to Extreme Environments
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(83% Open Access)
Cited by:
369
h-index:
22
/
i10-index:
45
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
31

Tardigrade CAHS Proteins Act as Molecular Swiss Army Knives to Mediate Desiccation Tolerance Through Multiple Mechanisms

Cherie Musgrove et al.Aug 17, 2021
Abstract Tardigrades, also known as water bears, make up a phylum of small but extremely hardy animals, renowned for their ability to survive extreme stresses, including desiccation. How tardigrades survive desiccation is one of the enduring mysteries of animal physiology. Here we show that CAHS D, an intrinsically disordered protein belonging to a unique family of proteins possessed only by tardigrades, undergoes a liquid-to-gel phase transition in a concentration dependent manner. Unlike other gelling proteins, such as gelatin, our data support a mechanism in which gel formation of CAHS D is driven by intermolecular β-β interactions. We find that gel formation corresponds with strong coordination of water and slowing of water diffusion. The degree of water coordination correlates with the ability of CAHS D to protect lactate dehydrogenase from unfolding when dried. This implies that the mechanism for unfolding protection can be attributed to a combination of hydration and slowed molecular motion. Conversely, rapid diffusion leading to efficient molecular shielding appears to be the predominant mechanism preventing protein aggregation. Our study demonstrates that distinct mechanisms are required for holistic protection during desiccation, and that protectants, such as CAHS D, can act as molecular ‘Swiss Army Knives’ capable of providing protection through several different mechanisms simultaneously.
31
Paper
Citation19
0
Save
0

Disordered proteins interact with the chemical environment to tune their protective function during drying

Shraddha Kc et al.Nov 19, 2024
The conformational ensemble and function of intrinsically disordered proteins (IDPs) are sensitive to their solution environment. The inherent malleability of disordered proteins, combined with the exposure of their residues, accounts for this sensitivity. One context in which IDPs play important roles that are concomitant with massive changes to the intracellular environment is during desiccation (extreme drying). The ability of organisms to survive desiccation has long been linked to the accumulation of high levels of cosolutes such as trehalose or sucrose as well as the enrichment of IDPs, such as late embryogenesis abundant (LEA) proteins or cytoplasmic abundant heat-soluble (CAHS) proteins. Despite knowing that IDPs play important roles and are co-enriched alongside endogenous, species-specific cosolutes during desiccation, little is known mechanistically about how IDP-cosolute interactions influence desiccation tolerance. Here, we test the notion that the protective function of desiccation-related IDPs is enhanced through conformational changes induced by endogenous cosolutes. We find that desiccation-related IDPs derived from four different organisms spanning two LEA protein families and the CAHS protein family synergize best with endogenous cosolutes during drying to promote desiccation protection. Yet the structural parameters of protective IDPs do not correlate with synergy for either CAHS or LEA proteins. We further demonstrate that for CAHS, but not LEA proteins, synergy is related to self-assembly and the formation of a gel. Our results suggest that functional synergy between IDPs and endogenous cosolutes is a convergent desiccation protection strategy seen among different IDP families and organisms, yet the mechanisms underlying this synergy differ between IDP families.
0
Citation1
0
Save
1

Water content, transition temperature and fragility influence protection and anhydrobiotic capacity

John Ramirez et al.Jul 2, 2023
Abstract Water is essential for metabolism and all life processes. Despite this, many organisms distributed across the kingdoms of life survive near-complete desiccation or anhydrobiosis (Greek for “life without water”). Increased intracellular viscosity, leading to the formation of a vitrified state is necessary, but not sufficient, for survival while dry. What properties of a vitrified system make it desiccation-tolerant or -sensitive are unknown. We have analyzed 18 different in vitro vitrified systems, composed of one of three protective disaccharides (trehalose, sucrose, or maltose) and varying amounts of glycerol, quantifying their enzyme-protective capacity and their material properties in a dry state. We find that protection conferred by mixtures containing maltose correlates strongly with increased water content, increased glass-transition temperature, and reduced glass former fragility, while the protection of glasses formed with sucrose correlates with increased glass transition temperature and the protection conferred by trehalose glasses correlates with reduced glass former fragility. Thus, in vitro different vitrified sugars confer protection through distinct material properties. Extending on this, we have examined the material properties of a dry desiccation tolerant and intolerant life stage from three different organisms. In all cases, the dried desiccation tolerant life stage of an organism had an increased glass transition temperature relative to its dried desiccation intolerant life stage, and this trend is also seen in all three organisms when considering reduced glass former fragility. These results suggest that while drying of different protective sugars in vitro results in vitrified systems with distinct material properties that correlate with their enzyme-protective capacity, in nature organismal desiccation tolerance relies on a combination of these properties. This study advances our understanding of how protective and non-protective glasses differ in terms of material properties that promote anhydrobiosis. This knowledge presents avenues to develop novel stabilization technologies for pharmaceuticals that currently rely on the cold-chain. 1.1 Statement of significance For the past three decades the anhydrobiosis field has lived with a paradox, while vitrification is necessary for survival in the dry state, it is not sufficient. Understanding what property(s) distinguishes a desiccation tolerant from an intolerant vitrified system and how anhydrobiotic organisms survive drying is one of the enduring mysteries of organismal physiology. Here we show in vitro the enzyme-protective capacity of different vitrifying sugars can be correlated with distinct material properties. However, in vivo, diverse desiccation tolerant organisms appear to combine these material properties to promote their survival in a dry state. 3.1 Highlights The enzyme-protective capacities of different glass forming sugars correlate with distinct material properties. Material properties of dried anhydrobiotic organisms differ dramatically when examined in desiccation tolerant and intolerant life stages. Organismal desiccation tolerance is concomitant with changes in glassy properties including increased glass transition temperature and reduced glass former fragility.
1
Citation1
0
Save
1

Helicity of a tardigrade disordered protein promotes desiccation tolerance

Sourav Biswas et al.Jul 6, 2023
Abstract In order to survive extreme drying (anhydrobiosis), many organisms, spanning every kingdom of life, accumulate intrinsically disordered proteins (IDPs). For decades, the ability of anhydrobiosis-related IDPs to form transient amphipathic helices has been suggested to be important for promoting desiccation tolerance. However, evidence empirically supporting the necessity and/or sufficiency of helicity in mediating anhydrobiosis is lacking. Here we demonstrate that the linker region of CAHS D, a desiccation-related IDP from tardigrades that contains significant helical structure, is the protective portion of this protein. Perturbing the sequence composition and grammar of the linker region of CAHS D, through the insertion of helix-breaking prolines, modulating the identity of charged residues, sequence scrambling, or replacement of hydrophobic amino acids with serine or glycine residues results in variants with different degrees of helical structure. Importantly, the resulting helicity of these variants generated through similar helix breaking modalities correlates strongly with their ability to promote desiccation tolerance, providing direct evidence that helical structure is necessary for robust protection conferred by this desiccation-related IDP. However, correlation of protective capacity and helical content in variants generated through different helix perturbing modalities do not show as strong a trend, suggesting that while helicity is important it is not the only property that makes a protein protective during desiccation. These results provide direct evidence for the decades old theory that helicity of desiccation-related IDPs is linked to their anhydrobiotic capacity.
1
Citation1
0
Save
0

Disordered proteins interact with the chemical environment to tune their protective function during drying

Shraddha Kc et al.Mar 2, 2024
The conformational ensemble and function of intrinsically disordered proteins (IDPs) are sensitive to their solution environment. The inherent malleability of disordered proteins combined with the exposure of their residues accounts for this sensitivity. One context in which IDPs play important roles that is concomitant with massive changes to the intracellular environment is during desiccation (extreme drying). The ability of organisms to survive desiccation has long been linked to the accumulation of high levels of cosolutes such as trehalose or sucrose as well as the enrichment of IDPs, such as late embryogenesis abundant (LEA) proteins or cytoplasmic abundant heat soluble (CAHS) proteins. Despite knowing that IDPs play important roles and are co-enriched alongside endogenous, species-specific cosolutes during desiccation, little is known mechanistically about how IDP-cosolute interactions influence desiccation tolerance. Here, we test the notion that the protective function of desiccation-related IDPs is enhanced through conformational changes induced by endogenous cosolutes. We find that desiccation-related IDPs derived from four different organisms spanning two LEA protein families and the CAHS protein family, synergize best with endogenous cosolutes during drying to promote desiccation protection. Yet the structural parameters of protective IDPs do not correlate with synergy for either CAHS or LEA proteins. We further demonstrate that for CAHS, but not LEA proteins, synergy is related to self-assembly and the formation of a gel. Our results suggest that functional synergy between IDPs and endogenous cosolutes is a convergent desiccation protection strategy seen among different IDP families and organisms, yet, the mechanisms underlying this synergy differ between IDP families.
0
Citation1
0
Save
0

LITE microscopy: a technique for high numerical aperture, low photobleaching fluorescence imaging

Tanner Fadero et al.Oct 4, 2017
Fluorescence microscopy is a powerful approach for studying sub-cellular dynamics at high spatiotemporal resolution; however, conventional fluorescence microscopy techniques are light-intensive and introduce unnecessary photodamage. Light sheet fluorescence microscopy (LSFM) mitigates these problems by selectively illuminating the focal plane of the detection objective using orthogonal excitation. Orthogonal excitation requires geometries that physically limit the detection objective numerical aperture (NA), thereby limiting both light-gathering efficiency (brightness) and native spatial resolution. We present a novel LSFM method: Lateral Interference Tilted Excitation (LITE), in which a tilted light sheet illuminates the detection objective focal plane without a sterically-limiting illumination scheme. LITE is thus compatible with any detection objective, including oil immersion, without an upper NA limit. LITE combines the low photodamage of LSFM with high resolution, high brightness, coverslip-based objectives. We demonstrate the utility of LITE for imaging animal, fungal, and plant model organisms over many hours at high spatiotemporal resolution.
0

Protein surface chemistry encodes an adaptive resistance to desiccation

Paulette Romero-Pérez et al.Jul 29, 2024
Cellular desiccation - the loss of nearly all water from the cell - is a recurring stress in an increasing number of ecosystems that can drive proteome-wide protein unfolding and aggregation. For cells to survive this stress, at least some of the proteome must disaggregate and resume function upon rehydration. The molecular determinants that underlie the ability of proteins to do this remain largely unknown. Here, we apply quantitative and structural proteomic mass spectrometry to desiccated and rehydrated yeast extracts to show that some proteins possess an innate capacity to survive extreme water loss. Structural analysis correlates the ability of proteins to resist desiccation with their surface chemistry. Remarkably, highly resistant proteins are responsible for the production of the cell's building blocks - amino acids, metabolites, and sugars. Conversely, those proteins that are most desiccation-sensitive are involved in ribosome biogenesis and other energy consuming processes. As a result, the rehydrated proteome is preferentially enriched with metabolite and small molecule producers and depleted of some of the cell's heaviest consumers. We propose this functional bias enables cells to kickstart their metabolism and promote cell survival following desiccation and rehydration.
Load More