WS
William Shih
Author with expertise in DNA Nanotechnology and Bioanalytical Applications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
29
(83% Open Access)
Cited by:
11,097
h-index:
50
/
i10-index:
75
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Self-assembly of DNA into nanoscale three-dimensional shapes

Shawn Douglas et al.May 20, 2009
An important goal in nanotechnology is the programmable self-assembly of complex, three-dimensional nanostructures. With DNA as the building block, synthesis techniques have developed to the stage where two-dimensional designer structures and certain three-dimensional structures can be produced. Douglas et al. describe a refinement of the scaffolded DNA origami technique capable of producing three-dimensional objects of more or less any desired form, to a scale of ten to a hundred nanometres, and with an impressive degree of control over the positions of the various DNA helices. The synthesis involves DNA helices arranged on pleated strands and assembled into honeycomb-like three-dimensional structures. The various strands link together via phosphate groups. The method produces complex objects that are slow to assemble. But it also provides a route towards assembling custom devices with nanometre-scale features, as demonstrated by the construction of objects with shapes resembling a square nut, slotted cross and wire-frame icosahedron. DNA has proved to be a versatile building block in the creation of complex structures through self-assembly, exploiting the intermolecular forces between the components. Here, the arrangement of DNA helices on pleated strands which are then assembled into honeycomb-like three-dimensional structures, produces objects of unprecedented complexity. Molecular self-assembly offers a ‘bottom-up’ route to fabrication with subnanometre precision of complex structures from simple components1. DNA has proved to be a versatile building block2,3,4,5 for programmable construction of such objects, including two-dimensional crystals6, nanotubes7,8,9,10,11, and three-dimensional wireframe nanopolyhedra12,13,14,15,16,17. Templated self-assembly of DNA18 into custom two-dimensional shapes on the megadalton scale has been demonstrated previously with a multiple-kilobase ‘scaffold strand’ that is folded into a flat array of antiparallel helices by interactions with hundreds of oligonucleotide ‘staple strands’19,20. Here we extend this method to building custom three-dimensional shapes formed as pleated layers of helices constrained to a honeycomb lattice. We demonstrate the design and assembly of nanostructures approximating six shapes—monolith, square nut, railed bridge, genie bottle, stacked cross, slotted cross—with precisely controlled dimensions ranging from 10 to 100 nm. We also show hierarchical assembly of structures such as homomultimeric linear tracks and heterotrimeric wireframe icosahedra. Proper assembly requires week-long folding times and calibrated monovalent and divalent cation concentrations. We anticipate that our strategy for self-assembling custom three-dimensional shapes will provide a general route to the manufacture of sophisticated devices bearing features on the nanometre scale.
0
Paper
Citation2,354
0
Save
0

Rapid prototyping of 3D DNA-origami shapes with caDNAno

Shawn Douglas et al.Jun 16, 2009
DNA nanotechnology exploits the programmable specificity afforded by base-pairing to produce self-assembling macromolecular objects of custom shape. For building megadalton-scale DNA nanostructures, a long 'scaffold' strand can be employed to template the assembly of hundreds of oligonucleotide 'staple' strands into a planar antiparallel array of cross-linked helices. We recently adapted this 'scaffolded DNA origami' method to producing 3D shapes formed as pleated layers of double helices constrained to a honeycomb lattice. However, completing the required design steps can be cumbersome and time-consuming. Here we present caDNAno, an open-source software package with a graphical user interface that aids in the design of DNA sequences for folding 3D honeycomb-pleated shapes A series of rectangular-block motifs were designed, assembled, and analyzed to identify a well-behaved motif that could serve as a building block for future studies. The use of caDNAno significantly reduces the effort required to design 3D DNA-origami structures. The software is available at http://cadnano.org/, along with example designs and video tutorials demonstrating their construction. The source code is released under the MIT license.
0
Citation1,101
0
Save
0

DNA-nanotube-induced alignment of membrane proteins for NMR structure determination

Shawn Douglas et al.Apr 3, 2007
Membrane proteins are encoded by 20–35% of genes but represent <1% of known protein structures to date. Thus, improved methods for membrane-protein structure determination are of critical importance. Residual dipolar couplings (RDCs), commonly measured for biological macromolecules weakly aligned by liquid-crystalline media, are important global angular restraints for NMR structure determination. For α-helical membrane proteins >15 kDa in size, Nuclear-Overhauser effect-derived distance restraints are difficult to obtain, and RDCs could serve as the main reliable source of NMR structural information. In many of these cases, RDCs would enable full structure determination that otherwise would be impossible. However, none of the existing liquid-crystalline media used to align water-soluble proteins are compatible with the detergents required to solubilize membrane proteins. We report the design and construction of a detergent-resistant liquid crystal of 0.8-μm-long DNA-nanotubes that can be used to induce weak alignment of membrane proteins. The nanotubes are heterodimers of 0.4-μm-long six-helix bundles each self-assembled from a 7.3-kb scaffold strand and >170 short oligonucleotide staple strands. We show that the DNA-nanotube liquid crystal enables the accurate measurement of backbone N H and C α H α RDCs for the detergent-reconstituted ζ-ζ transmembrane domain of the T cell receptor. The measured RDCs validate the high-resolution structure of this transmembrane dimer. We anticipate that this medium will extend the advantages of weak alignment to NMR structure determination of a broad range of detergent-solubilized membrane proteins.
0
Paper
Citation463
0
Save
0

Virus-Inspired Membrane Encapsulation of DNA Nanostructures To Achieve In Vivo Stability

Steven Perrault et al.Apr 2, 2014
DNA nanotechnology enables engineering of molecular-scale devices with exquisite control over geometry and site-specific functionalization. This capability promises compelling advantages in advancing nanomedicine; nevertheless, instability in biological environments and innate immune activation remain as obstacles for in vivo application. Natural particle systems (i.e., viruses) have evolved mechanisms to maintain structural integrity and avoid immune recognition during infection, including encapsulation of their genome and protein capsid shell in a lipid envelope. Here we introduce virus-inspired enveloped DNA nanostructures as a design strategy for biomedical applications. Achieving a high yield of tightly wrapped unilamellar nanostructures, mimicking the morphology of enveloped virus particles, required precise control over the density of attached lipid conjugates and was achieved at 1 per ∼180 nm2. Envelopment of DNA nanostructures in PEGylated lipid bilayers conferred protection against nuclease digestion. Immune activation was decreased 2 orders of magnitude below controls, and pharmacokinetic bioavailability improved by a factor of 17. By establishing a design strategy suitable for biomedical applications, we have provided a platform for the engineering of sophisticated, translation-ready DNA nanodevices.
0
Paper
Citation443
0
Save
0

Multilayer DNA Origami Packed on a Square Lattice

Yonggang Ke et al.Oct 6, 2009
Molecular self-assembly using DNA as a structural building block has proven to be an efficient route to the construction of nanoscale objects and arrays of increasing complexity. Using the remarkable "scaffolded DNA origami" strategy, Rothemund demonstrated that a long single-stranded DNA from a viral genome (M13) can be folded into a variety of custom two-dimensional (2D) shapes using hundreds of short synthetic DNA molecules as staple strands. More recently, we generalized a strategy to build custom-shaped, three-dimensional (3D) objects formed as pleated layers of helices constrained to a honeycomb lattice, with precisely controlled dimensions ranging from 10 to 100 nm. Here we describe a more compact design for 3D origami, with layers of helices packed on a square lattice, that can be folded successfully into structures of designed dimensions in a one-step annealing process, despite the increased density of DNA helices. A square lattice provides a more natural framework for designing rectangular structures, the option for a more densely packed architecture, and the ability to create surfaces that are more flat than is possible with the honeycomb lattice. Thus enabling the design and construction of custom 3D shapes from helices packed on a square lattice provides a general foundational advance for increasing the versatility and scope of DNA nanotechnology.
0
Paper
Citation391
0
Save
Load More