JN
Jonas Nikoloff
Author with expertise in Pathophysiology of Parkinson's Disease
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
21
h-index:
7
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
63

Fate and state transitions during human blood vessel organoid development

Marina Nikolova et al.Mar 23, 2022
Blood vessel organoids (BVOs) derived from human pluripotent stem cells have emerged as a novel system to understand human vascular development, model disorders, and develop regenerative therapies. However, it is unclear which molecular states constitute BVOs and how cells differentiate and self-organize within BVOs in vitro and after transplantation. Here we reconstruct BVO development over a time course using single-cell transcriptomics. We observe progenitor states that bifurcate into endothelial and mural fates, and find that BVOs do not acquire definitive arterio-venous endothelial identities in vitro . Chromatin accessibility profiling identifies gene regulatory network (GRN) features associated with endothelial and mural fate decisions, and transcriptome-coupled lineage recording reveals multipotent progenitor states within BVOs. We perform single-cell genetic perturbations within mosaic BVOs to dissect the impact of transcription factor (TF) and receptor depletion on cell differentiation, and highlight multiple TFs including MECOM and ETV2 as strong-effect regulators of human BVO development. We show that manipulation of VEGF and Notch signaling pathways alters BVO morphogenesis and endothelial GRNs, and induces arteriovenous-like state differentiation. We analyze matured BVOs after transplantation using scRNA-seq, and observe matured endothelium with clear arteriovenous specification. We also observe off-target cell fates with bone and adipocyte features, suggesting multipotent states reside within the BVOs in vitro that expand and diversify in less restrictive conditions. Finally, we map vascular disease associated genes to BVO cell states to highlight the potential of BVOs for disease modeling. Altogether, our data and analyses provide the first comprehensive cell state atlas of BVO development and illuminate both the power and limitation of BVOs for translational research.
63
Citation17
0
Save
0

Loss of primary cilia and dopaminergic neuroprotection in pathogenic LRRK2-driven and idiopathic Parkinson’s disease

Shahzad Khan et al.Aug 1, 2024
Activating leucine-rich repeat kinase 2 (LRRK2) mutations cause Parkinson's and phosphorylation of Rab10 by pathogenic LRRK2 blocks primary ciliogenesis in cultured cells. In the mouse brain, LRRK2 blockade of primary cilia is highly cell type specific: For example, cholinergic interneurons and astrocytes but not medium spiny neurons of the dorsal striatum lose primary cilia in LRRK2-pathway mutant mice. We show here that the cell type specificity of LRRK2-mediated cilia loss is also seen in human postmortem striatum from patients with LRRK2 pathway mutations and idiopathic Parkinson's. Single nucleus RNA sequencing shows that cilia loss in mouse cholinergic interneurons is accompanied by decreased glial-derived neurotrophic factor transcription, decreasing neuroprotection for dopamine neurons. Nevertheless, LRRK2 expression differences cannot explain the unique vulnerability of cholinergic neurons to LRRK2 kinase as much higher LRRK2 expression is seen in medium spiny neurons that have normal cilia. In parallel with decreased striatal dopaminergic neurite density, LRRK2 G2019S neurons show increased autism-linked CNTN5 adhesion protein expression; glial cells show significant loss of ferritin heavy chain. These data strongly suggest that loss of cilia in specific striatal cell types decreases neuroprotection for dopamine neurons in mice and human Parkinson's.
0
Citation3
0
Save
0

Endogenous LRRK2 and PINK1 function in a convergent neuroprotective ciliogenesis pathway in the brain

Enrico Bagnoli et al.Jun 11, 2024
ABSTRACT Mutations in LRRK2 and PINK1 are associated with familial Parkinson’s disease (PD). LRRK2 phosphorylates Rab GTPases within the Switch II domain whilst PINK1 directly phosphorylates Parkin and ubiquitin and indirectly induces phosphorylation of a subset of Rab GTPases. Herein we have crossed LRRK2 [R1441C] mutant knock-in mice with PINK1 knock-out (KO) mice and report that loss of PINK1 does not impact endogenous LRRK2-mediated Rab phosphorylation nor do we see significant effect of mutant LRRK2 on PINK1-mediated Rab and ubiquitin phosphorylation. In addition, we observe that a pool of the Rab-specific, PPM1H phosphatase, is transcriptionally up-regulated and recruited to damaged mitochondria, independent of PINK1 or LRRK2 activity. Parallel signalling of LRRK2 and PINK1 pathways is supported by assessment of motor behavioural studies that show no evidence of genetic interaction in crossed mouse lines. Previously we showed loss of cilia in LRRK2 R1441C mice and herein we show that PINK1 KO mice exhibit a ciliogenesis defect in striatal cholinergic interneurons and astrocytes that interferes with Hedgehog induction of glial derived-neurotrophic factor (GDNF) transcription. This is not exacerbated in double mutant LRRK2 and PINK1 mice. Overall, our analysis indicates that LRRK2 activation and/or loss of PINK1 function along parallel pathways to impair ciliogenesis, suggesting a convergent mechanism towards PD. Our data suggests that reversal of defects downstream of ciliogenesis offers a common therapeutic strategy for LRRK2 or PINK1 PD patients whereas LRRK2 inhibitors that are currently in clinical trials are unlikely to benefit PINK1 PD patients.
0
Citation1
0
Save