RM
Ronald Moore
Author with expertise in Mass Spectrometry Techniques with Proteins
Pacific Northwest National Laboratory, Battelle, Richland College
+ 7 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
15
(80% Open Access)
Cited by:
219
h-index:
70
/
i10-index:
184
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
14

Integrated Proteogenomic Characterization across Major Histological Types of Pediatric Brain Cancer

Francesca Petralia et al.May 25, 2021
+141
B
N
F
We report a comprehensive proteogenomics analysis, including whole-genome sequencing, RNA sequencing, and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify common biological themes that span histological boundaries, suggesting that treatments used for one histological type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape characterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptomics data. Kinase-substrate association and co-expression network analysis identify important biological mechanisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.
1

Temporal dynamics of the multi-omic response to endurance exercise training across tissues

David Amar et al.Oct 24, 2023
+180
P
N
D
Abstract Regular exercise promotes whole-body health and prevents disease, yet the underlying molecular mechanisms throughout a whole organism are incompletely understood. Here, the Molecular Transducers of Physical Activity Consortium (MoTrPAC) profiled the temporal transcriptome, proteome, metabolome, lipidome, phosphoproteome, acetylproteome, ubiquitylproteome, epigenome, and immunome in whole blood, plasma, and 18 solid tissues in Rattus norvegicus over 8 weeks of endurance exercise training. The resulting data compendium encompasses 9466 assays across 19 tissues, 25 molecular platforms, and 4 training time points in young adult male and female rats. We identified thousands of shared and tissue- and sex-specific molecular alterations. Temporal multi-omic and multi-tissue analyses demonstrated distinct patterns of tissue remodeling, with widespread regulation of immune, metabolism, heat shock stress response, and mitochondrial pathways. These patterns provide biological insights into the adaptive responses to endurance training over time. For example, exercise training induced heart remodeling via altered activity of the Mef2 family of transcription factors and tyrosine kinases. Translational analyses revealed changes that are consistent with human endurance training data and negatively correlated with disease, including increased phospholipids and decreased triacylglycerols in the liver. Sex differences in training adaptation were widespread, including those in the brain, adrenal gland, lung, and adipose tissue. Integrative analyses generated novel hypotheses of disease relevance, including candidate mechanisms that link training adaptation to non-alcoholic fatty liver disease, inflammatory bowel disease, cardiovascular health, and tissue injury and recovery. The data and analysis results presented in this study will serve as valuable resources for the broader community and are provided in an easily accessible public repository ( https://motrpac-data.org/ ). Highlights Multi-tissue resource identifies 35,439 analytes regulated by endurance exercise training at 5% FDR across 211 combinations of tissues and molecular platforms. Interpretation of systemic and tissue-specific molecular adaptations produced hypotheses to help describe the health benefits induced by exercise. Robust sex-specific responses to endurance exercise training are observed across multiple organs at the molecular level. Deep multi-omic profiling of six tissues defines regulatory signals for tissue adaptation to endurance exercise training. All data are available in a public repository, and processed data, analysis results, and code to reproduce major analyses are additionally available in convenient R packages.
1
Paper
Citation12
0
Save
84

Parallel measurement of transcriptomes and proteomes from same single cells using nanodroplet splitting

James Fulcher et al.Oct 24, 2023
+8
H
L
J
ABSTRACT Single-cell multiomics can provide comprehensive insights into gene regulatory networks, cellular diversity, and temporal dynamics. While tools for co-profiling the single-cell genome, transcriptome, and epigenome are available, accessing the proteome in parallel is more challenging. To overcome this limitation, we developed nanoSPLITS (nanodroplet SPlitting for Linked-multimodal Investigations of Trace Samples), a platform that enables unbiased measurement of the transcriptome and proteome from same single cells using RNA sequencing and mass spectrometry-based proteomics, respectively. We demonstrated the nanoSPLITS can robustly profile > 5000 genes and > 2000 proteins per single cell, and identify cell-type-specific markers from both modalities.
84
Citation12
0
Save
8

Robust, sensitive, and quantitative single-cell proteomics based on ion mobility filtering

Jongmin Woo et al.Oct 24, 2023
+9
S
G
J
Abstract Unbiased single-cell proteomics (scProteomics) promises to advance our understanding of cell functions within complex biological systems. However, a major challenge for current methods is their ability to identify and provide accurate quantitative information for low abundance proteins. Herein, we describe an ion mobility-enhanced mass spectrometry acquisition and peptide identification method, TIFF (Transferring Identification based on FAIMS Filtering), designed to improve the sensitivity and accuracy of label-free scProteomics. TIFF significantly extends the ion accumulation times for peptide ions by filtering out singly charged background ions. The peptide identities are then assigned by a 3-dimensional MS1 feature matching approach (retention time, accurate mass, and FAIMS compensation voltage). The TIFF method enabled unbiased proteome analysis to a depth of >1,700 proteins in single HeLa cells with >1,100 proteins consistently quantified. As a demonstration, we applied the TIFF method to obtain temporal proteome profiles of >150 single murine macrophage cells during a lipopolysaccharide stimulation experiment and identified time-dependent proteome profiles.
8
Citation2
0
Save
4

A streamlined tandem tip-based workflow for sensitive nanoscale phosphoproteomics

CF Tsai et al.Oct 24, 2023
+14
C
Y
C
Abstract Effective phosphoproteome of nanoscale sample analysis remains a daunting task, primarily due to significant sample loss associated with non-specific surface adsorption during enrichment of low stoichiometric phosphopeptide. We developed a novel tandem tip phosphoproteomics sample preparation method that is capable of sample cleanup and enrichment without additional sample transfer, and its integration with our recently developed SOP (Surfactant-assisted One-Pot sample preparation) and iBASIL (improved Boosting to Amplify Signal with Isobaric Labeling) approaches provides a streamlined workflow enabling sensitive, high-throughput nanoscale phosphoproteome measurements. This approach significantly reduces both sample loss and processing time, allowing the identification of >3,000 (>9,500) phosphopeptides from 1 (10) µg of cell lysate using the label-free method without a spectral library. It also enabled precise quantification of ∼600 phosphopeptides from 100 cells sorted by FACS (single-cell level input for the enriched phosphopeptides) and ∼700 phosphopeptides from human spleen tissue voxels with a spatial resolution of 200 µm (equivalent to ∼100 cells) in a high-throughput manner. The new workflow opens avenues for phosphoproteome profiling of mass-limited samples at the low nanogram level.
0

MetFish: A Metabolomics Platform for Studying Microbial Communities in Chemically Extreme Environments

Chengdong Xu et al.May 7, 2020
+13
R
S
C
Metabolites have essential roles in microbial communities, including as mediators of nutrient and energy exchange, cell-to-cell communication, and antibiosis. However, detecting and quantifying metabolites and other chemicals in samples having extremes in salt or mineral content using liquid chromatography-mass spectrometry (LC-MS)-based methods remains a significant challenge. Here we report a facile method based on in situ chemical derivatization followed by extraction for analysis of metabolites and other chemicals in hypersaline samples, enabling for the first time direct LC-MS-based exo-metabolomics analysis in sample matrices containing up to 2 molar total dissolved salts. The method, MetFish, is applicable to molecules containing amine, carboxylic acid, carbonyl, or hydroxyl functional groups, and can be integrated into either targeted or untargeted analysis pipelines. In targeted analyses, MetFish provided limits of quantification as low as 1 nM, broad linear dynamic ranges (up to 5-6 orders of magnitude) with excellent linearity, and low median inter-day reproducibility (e.g. 2.6%). MetFish was successfully applied in targeted and untargeted exo-metabolomics analyses of microbial consortia, quantifying amino acid dynamics in the exo-metabolome during community succession; in situ in a native prairie soil, whose exo-metabolome was isolated using a hypersaline extraction; and in input and produced fluids from a hydraulically fractured well, identifying dramatic changes in the exo-metabolome over time in the well.
0

Rapidly Assessing the Quality of Targeted Proteomics Experiments Through Monitoring Stable-isotope Labeled Standards

Bryson Gibbons et al.May 7, 2020
+5
Y
T
B
Targeted proteomics experiments based on selected reaction monitoring (SRM) have gained wide adoption in clinical biomarker, cellular modeling and numerous other biological experiments due to their highly accurate and reproducible quantification. The quantitative accuracy in targeted proteomics experiments is reliant on the stable-isotope, heavy-labeled peptide standards which are spiked into a sample and used as a reference when calculating the abundance of endogenous peptides. Therefore, the quality of measurement for these standards is a critical factor in determining whether data acquisition was successful. With improved MS instrumentation that enables the monitoring of hundreds of peptides in hundreds to thousands of samples, quality assessment is increasingly important and cannot be performed manually. We present Q4SRM, a software tool that rapidly checks the signal from all heavy labeled peptides and flags those that fail quality control metrics. Using four metrics, the tool detects problems both with individual SRM transitions and the collective group of transitions that monitor a single peptide. The programs speed enables its use at the point of data acquisition and can be ideally run immediately upon the completion of an LC-SRM-MS analysis.
1

CD81 partners with CD44 in promoting exosome biogenesis, tumor cluster formation, and lung metastasis in triple negative breast cancer

Erika Ramos et al.Oct 24, 2023
+25
N
C
E
Abstract Tumor-initiating cells with reprogramming plasticity are thought to be essential for cancer development and metastatic regeneration in many cancers; however, the molecular mechanisms are not fully understood. This study reports that CD81, a tetraspanin protein marker of small extracellular vesicles (exosomes), functions as a binding partner of CD44 and facilitates self-renewal of tumor initiating cells. Using machine learning-assisted protein structure modeling, co-immunoprecipitation, and mutagenesis approaches, we further demonstrate that CD81 interacts with CD44 on the cellular membrane through their extracellular regions. In-depth global and phosphoproteomic analyses of clustering tumor cells unveils endocytosis-related signature pathways of proteins and phosphorylation patterns regulated by CD81 and CD44 specifically or shared between two. Notably, CRISPR Cas9-mediated depletion of either CD44 or CD81 results in loss of both proteins in cancer cell-secreted exosomes, a state which abolishes exosome-induced self-renewal of recipient cells for mammosphere formation. CD81 is expressed in >80% of human circulating tumor cells (CTCs) and specifically enriched in clustered CTCs along with CD44 isolated from breast cancer patients. Mimicking the phenotypes of CD44 deficiency, loss of CD81 also inhibits tumor cluster aggregation, tumorigenesis, and lung metastasis of triple negative breast cancer (TNBC), supporting the clinical significance of CD81 in association with patient outcomes. Our study highlights the novel role of CD81 and its partnership with CD44 in cancer exosomes, self-renewal, CTC clustering, and metastasis initiation of TNBC.
3

A Deep Redox Proteome Profiling Workflow and Its Application to Skeletal Muscle of a Duchene Muscular Dystrophy Model

Nicholas Day et al.Oct 24, 2023
+5
M
T
N
Abstract Perturbation to the redox state accompanies many diseases and its effects are viewed through oxidation of biomolecules, including proteins, lipids, and nucleic acids. The thiol groups of protein cysteine residues undergo an array of redox post-translational modifications (PTMs) that are important for regulation of protein and pathway function. To better understand what proteins are redox regulated following a perturbation, it is important to be able to comprehensively profile protein thiol oxidation at the proteome level. Herein, we report a deep redox proteome profiling workflow and demonstrate its application in measuring the changes in thiol oxidation along with global protein expression in skeletal muscle from mdx mice, a model of Duchenne Muscular Dystrophy (DMD). In depth coverage of the thiol proteome was achieved with >18,000 Cys sites from 5608 proteins in muscle being quantified. Compared to the control group, mdx mice exhibit markedly increased thiol oxidation, where ~2% shift in the median oxidation occupancy was observed. Pathway analysis for the redox data revealed that coagulation system and immune-related pathways were among the most susceptible to increased thiol oxidation in mdx mice, whereas protein abundance changes were more enriched in pathways associated with bioenergetics. This study illustrates the importance of deep redox profiling in gaining a greater insight into oxidative stress regulation and pathways/processes being perturbed in an oxidizing environment. Graphical Abstract Highlights Deep redox profiling workflow results in stoichiometric quantification of thiol oxidation for > 18,000 Cys sites in muscle Thiol redox changes were much more pronounced than protein abundance changes for the overlapping set of proteins Redox changes are most significant in coagulation and immune response pathways while abundance changes on bioenergetics pathways
1

Enhancing top-down proteomics of brain tissue with FAIMS

James Fulcher et al.Oct 24, 2023
+6
R
A
J
Abstract Proteomic investigations of Alzheimer’s and Parkinson’s disease have provided valuable insights into neurodegenerative disorders. Thus far, these investigations have largely been restricted to bottom-up approaches, hindering the degree to which one can characterize a protein’s “intact” state. Top-down proteomics (TDP) overcomes this limitation, however it is typically limited to observing only the most abundant proteoforms and of a relatively small size. Therefore, offline fractionation techniques are commonly used to reduce sample complexity, limiting throughput. A higher throughput alternative is online fractionation, such as gas phase high-field asymmetric waveform ion mobility spectrometry (FAIMS). Utilizing a high complexity sample derived from Alzheimer’s disease brain tissue, we describe how the addition of FAIMS to TDP can robustly improve the depth of proteome coverage. For example, implementation of FAIMS at −50 compensation voltage (CV) more than doubled the mean number of non-redundant proteoforms observed (1,833 ± 17, n = 3), compared to without (754 ± 35 proteoforms). We also found FAIMS can influence the transmission of proteoforms and their charge envelopes based on their size. Importantly, FAIMS enabled the identification of intact amyloid beta (Aβ) proteoforms, including the aggregation-prone Aβ 1-42 variant which is strongly linked to Alzheimer’s disease.
Load More