NM
Nicolas Musi
Author with expertise in Brown Adipose Tissue Function and Physiology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
18
(83% Open Access)
Cited by:
10,191
h-index:
59
/
i10-index:
124
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Role of AMP-activated protein kinase in mechanism of metformin action

Gaochao Zhou et al.Oct 15, 2001
Metformin is a widely used drug for treatment of type 2 diabetes with no defined cellular mechanism of action. Its glucose-lowering effect results from decreased hepatic glucose production and increased glucose utilization. Metformin’s beneficial effects on circulating lipids have been linked to reduced fatty liver. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. Here we report that metformin activates AMPK in hepatocytes; as a result, acetyl-CoA carboxylase (ACC) activity is reduced, fatty acid oxidation is induced, and expression of lipogenic enzymes is suppressed. Activation of AMPK by metformin or an adenosine analogue suppresses expression of SREBP-1, a key lipogenic transcription factor. In metformin-treated rats, hepatic expression of SREBP-1 (and other lipogenic) mRNAs and protein is reduced; activity of the AMPK target, ACC, is also reduced. Using a novel AMPK inhibitor, we find that AMPK activation is required for metformin’s inhibitory effect on glucose production by hepatocytes. In isolated rat skeletal muscles, metformin stimulates glucose uptake coincident with AMPK activation. Activation of AMPK provides a unified explanation for the pleiotropic beneficial effects of this drug; these results also suggest that alternative means of modulating AMPK should be useful for the treatment of metabolic disorders.
0

Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study

Jamie Justice et al.Jan 5, 2019

Abstract

Background

 Cellular senescence is a key mechanism that drives age-related diseases, but has yet to be targeted therapeutically in humans. Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal cellular senescence-associated disease. Selectively ablating senescent cells using dasatinib plus quercetin (DQ) alleviates IPF-related dysfunction in bleomycin-administered mice. 

Methods

 A two-center, open-label study of intermittent DQ (D:100 mg/day, Q:1250 mg/day, three-days/week over three-weeks) was conducted in participants with IPF (n = 14) to evaluate feasibility of implementing a senolytic intervention. The primary endpoints were retention rates and completion rates for planned clinical assessments. Secondary endpoints were safety and change in functional and reported health measures. Associations with the senescence-associated secretory phenotype (SASP) were explored. 

Findings

 Fourteen patients with stable IPF were recruited. The retention rate was 100% with no DQ discontinuation; planned clinical assessments were complete in 13/14 participants. One serious adverse event was reported. Non-serious events were primarily mild-moderate, with respiratory symptoms (n = 16 total events), skin irritation/bruising (n = 14), and gastrointestinal discomfort (n = 12) being most frequent. Physical function evaluated as 6-min walk distance, 4-m gait speed, and chair-stands time was significantly and clinically-meaningfully improved (p < .05). Pulmonary function, clinical chemistries, frailty index (FI-LAB), and reported health were unchanged. DQ effects on circulat.ing SASP factors were inconclusive, but correlations were observed between change in function and change in SASP-related matrix-remodeling proteins, microRNAs, and pro-inflammatory cytokines (23/48 markers r ≥ 0.50). 

Interpretation

 Our first-in-humans open-label pilot supports study feasibility and provides initial evidence that senolytics may alleviate physical dysfunction in IPF, warranting evaluation of DQ in larger randomized controlled trials for senescence-related diseases. ClinicalTrials.gov identifier: NCT02874989 (posted 2016–2018).
0
Citation854
0
Save
0

Long-Term Pioglitazone Treatment for Patients With Nonalcoholic Steatohepatitis and Prediabetes or Type 2 Diabetes Mellitus

Kenneth Cusi et al.Jun 20, 2016
The metabolic defects of nonalcoholic steatohepatitis (NASH) and prediabetes or type 2 diabetes mellitus (T2DM) seem to be specifically targeted by pioglitazone. However, information about its long-term use in this population is limited.To determine the efficacy and safety of long-term pioglitazone treatment in patients with NASH and prediabetes or T2DM.Randomized, double-blind, placebo-controlled trial. (ClinicalTrials.gov: NCT00994682).University hospital.Patients (n = 101) with prediabetes or T2DM and biopsy-proven NASH were recruited from the general population and outpatient clinics.All patients were prescribed a hypocaloric diet (500-kcal/d deficit from weight-maintaining caloric intake) and then randomly assigned to pioglitazone, 45 mg/d, or placebo for 18 months, followed by an 18-month open-label phase with pioglitazone treatment.The primary outcome was a reduction of at least 2 points in the nonalcoholic fatty liver disease activity score in 2 histologic categories without worsening of fibrosis. Secondary outcomes included other histologic outcomes, hepatic triglyceride content measured by magnetic resonance and proton spectroscopy, and metabolic parameters.Among patients randomly assigned to pioglitazone, 58% achieved the primary outcome (treatment difference, 41 percentage points [95% CI, 23 to 59 percentage points]) and 51% had resolution of NASH (treatment difference, 32 percentage points [CI, 13 to 51 percentage points]) (P < 0.001 for each). Pioglitazone treatment also was associated with improvement in individual histologic scores, including the fibrosis score (treatment difference, -0.5 [CI, -0.9 to 0.0]; P = 0.039); reduced hepatic triglyceride content from 19% to 7% (treatment difference, -7 percentage points [CI, -10 to -4 percentage points]; P < 0.001); and improved adipose tissue, hepatic, and muscle insulin sensitivity (P < 0.001 vs. placebo for all). All 18-month metabolic and histologic improvements persisted over 36 months of therapy. The overall rate of adverse events did not differ between groups, although weight gain was greater with pioglitazone (2.5 kg vs. placebo).Single-center study.Long-term pioglitazone treatment is safe and effective in patients with prediabetes or T2DM and NASH.Burroughs Wellcome Fund and American Diabetes Association.
0

Metformin Increases AMP-Activated Protein Kinase Activity in Skeletal Muscle of Subjects With Type 2 Diabetes

Nicolas Musi et al.Jul 1, 2002
Metformin is an effective hypoglycemic drug that lowers blood glucose concentrations by decreasing hepatic glucose production and increasing glucose disposal in skeletal muscle; however, the molecular site of metformin action is not well understood. AMP-activated protein kinase (AMPK) activity increases in response to depletion of cellular energy stores, and this enzyme has been implicated in the stimulation of glucose uptake into skeletal muscle and the inhibition of liver gluconeogenesis. We recently reported that AMPK is activated by metformin in cultured rat hepatocytes, mediating the inhibitory effects of the drug on hepatic glucose production. In the present study, we evaluated whether therapeutic doses of metformin increase AMPK activity in vivo in subjects with type 2 diabetes. Metformin treatment for 10 weeks significantly increased AMPK α2 activity in the skeletal muscle, and this was associated with increased phosphorylation of AMPK on Thr172 and decreased acetyl-CoA carboxylase-2 activity. The increase in AMPK α2 activity was likely due to a change in muscle energy status because ATP and phosphocreatine concentrations were lower after metformin treatment. Metformin-induced increases in AMPK activity were associated with higher rates of glucose disposal and muscle glycogen concentrations. These findings suggest that the metabolic effects of metformin in subjects with type 2 diabetes may be mediated by the activation of AMPK α2.
0

Role of AMP-activated protein kinase in mechanism of metformin action

Gaochao Zhou et al.Oct 15, 2001
Metformin is a widely used drug for treatment of type 2 diabetes with no defined cellular mechanism of action. Its glucose-lowering effect results from decreased hepatic glucose production and increased glucose utilization. Metformin’s beneficial effects on circulating lipids have been linked to reduced fatty liver. AMP-activated protein kinase (AMPK) is a major cellular regulator of lipid and glucose metabolism. Here we report that metformin activates AMPK in hepatocytes; as a result, acetyl-CoA carboxylase (ACC) activity is reduced, fatty acid oxidation is induced, and expression of lipogenic enzymes is suppressed. Activation of AMPK by metformin or an adenosine analogue suppresses expression of SREBP-1, a key lipogenic transcription factor. In metformin-treated rats, hepatic expression of SREBP-1 (and other lipogenic) mRNAs and protein is reduced; activity of the AMPK target, ACC, is also reduced. Using a novel AMPK inhibitor, we find that AMPK activation is required for metformin’s inhibitory effect on glucose production by hepatocytes. In isolated rat skeletal muscles, metformin stimulates glucose uptake coincident with AMPK activation. Activation of AMPK provides a unified explanation for the pleiotropic beneficial effects of this drug; these results also suggest that alternative means of modulating AMPK should be useful for the treatment of metabolic disorders.
0

Tau protein aggregation is associated with cellular senescence in the brain

Nicolas Musi et al.Aug 20, 2018
Abstract Tau protein accumulation is the most common pathology among degenerative brain diseases, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), traumatic brain injury (TBI), and over twenty others. Tau‐containing neurofibrillary tangle (NFT) accumulation is the closest correlate with cognitive decline and cell loss (Arriagada, Growdon, Hedley‐Whyte, & Hyman, ), yet mechanisms mediating tau toxicity are poorly understood. NFT formation does not induce apoptosis (de Calignon, Spires‐Jones, Pitstick, Carlson, & Hyman, 2009), which suggests that secondary mechanisms are driving toxicity. Transcriptomic analyses of NFT‐containing neurons microdissected from postmortem AD brain revealed an expression profile consistent with cellular senescence. This complex stress response induces aberrant cell cycle activity, adaptations to maintain survival, cellular remodeling, and metabolic dysfunction. Using four AD transgenic mouse models, we found that NFTs, but not Aβ plaques, display a senescence‐like phenotype. Cdkn2a transcript level, a hallmark measure of senescence, directly correlated with brain atrophy and NFT burden in mice. This relationship extended to postmortem brain tissue from humans with PSP to indicate a phenomenon common to tau toxicity. Tau transgenic mice with late‐stage pathology were treated with senolytics to remove senescent cells. Despite the advanced age and disease progression, MRI brain imaging and histopathological analyses indicated a reduction in total NFT density, neuron loss, and ventricular enlargement. Collectively, these findings indicate a strong association between the presence of NFTs and cellular senescence in the brain, which contributes to neurodegeneration. Given the prevalence of tau protein deposition among neurodegenerative diseases, these findings have broad implications for understanding, and potentially treating, dozens of brain diseases.
0
Citation432
0
Save
0

Elevated Toll-Like Receptor 4 Expression and Signaling in Muscle From Insulin-Resistant Subjects

Sara Reyna et al.Jul 16, 2008
OBJECTIVE— Tall-like receptor (TLR)4 has been implicated in the pathogenesis of free fatty acid (FFA)-induced insulin resistance by activating inflammatory pathways, including inhibitor of κB (IκB)/nuclear factor κB (NFκB). However, it is not known whether insulin-resistant subjects have abnormal TLR4 signaling. We examined whether insulin-resistant subjects have abnormal TLR4 expression and TLR4-driven (IκB/NFκB) signaling in skeletal muscle. RESEARCH DESIGN AND METHODS— TLR4 gene expression and protein content were measured in muscle biopsies in 7 lean, 8 obese, and 14 type 2 diabetic subjects. A primary human myotube culture system was used to examine whether FFAs stimulate IκB/NFκB via TLR4 and whether FFAs increase TLR4 expression/content in muscle. RESULTS— Obese and type 2 diabetic subjects had significantly elevated TLR4 gene expression and protein content in muscle. TLR4 muscle protein content correlated with the severity of insulin resistance. Obese and type 2 diabetic subjects also had lower IκBα content, an indication of elevated IκB/NFκB signaling. The increase in TLR4 and NFκB signaling was accompanied by elevated expression of the NFκB-regulated genes interleukin (IL)-6 and superoxide dismutase (SOD)2. In primary human myotubes, acute palmitate treatment stimulated IκB/NFκB, and blockade of TLR4 prevented the ability of palmitate to stimulate the IκB/NFκB pathway. Increased TLR4 content and gene expression observed in muscle from insulin-resistant subjects were reproduced by treating myotubes from lean, normal-glucose-tolerant subjects with palmitate. Palmitate also increased IL-6 and SOD2 gene expression, and this effect was prevented by inhibiting NFκB. CONCLUSIONS— Abnormal TLR4 expression and signaling, possibly caused by elevated plasma FFA levels, may contribute to the pathogenesis of insulin resistance in humans.
0

Effect of Acute Exercise on AMPK Signaling in Skeletal Muscle of Subjects With Type 2 Diabetes

Apiradee Sriwijitkamol et al.Feb 27, 2007
Activation of AMP-activated protein kinase (AMPK) by exercise induces several cellular processes in muscle. Exercise activation of AMPK is unaffected in lean (BMI ∼25 kg/m2) subjects with type 2 diabetes. However, most type 2 diabetic subjects are obese (BMI &gt;30 kg/m2), and exercise stimulation of AMPK is blunted in obese rodents. We examined whether obese type 2 diabetic subjects have impaired exercise stimulation of AMPK, at different signaling levels, spanning from the upstream kinase, LKB1, to the putative AMPK targets, AS160 and peroxisome proliferator–activated receptor coactivator (PGC)-1α, involved in glucose transport regulation and mitochondrial biogenesis, respectively. Twelve type 2 diabetic, eight obese, and eight lean subjects exercised on a cycle ergometer for 40 min. Muscle biopsies were done before, during, and after exercise. Subjects underwent this protocol on two occasions, at low (50% Vo2max) and moderate (70% Vo2max) intensities, with a 4–6 week interval. Exercise had no effect on LKB1 activity. Exercise had a time- and intensity-dependent effect to increase AMPK activity and AS160 phosphorylation. Obese and type 2 diabetic subjects had attenuated exercise-stimulated AMPK activity and AS160 phosphorylation. Type 2 diabetic subjects had reduced basal PGC-1 gene expression but normal exercise-induced increases in PGC-1 expression. Our findings suggest that obese type 2 diabetic subjects may need to exercise at higher intensity to stimulate the AMPK-AS160 axis to the same level as lean subjects.
0

Diabetes and Cardiovascular Disease in Older Adults: Current Status and Future Directions

Jeffrey Halter et al.Jul 17, 2014
The prevalence of diabetes increases with age, driven in part by an absolute increase in incidence among adults aged 65 years and older. Individuals with diabetes are at higher risk for cardiovascular disease, and age strongly predicts cardiovascular complications. Inflammation and oxidative stress appear to play some role in the mechanisms underlying aging, diabetes, cardiovascular disease, and other complications of diabetes. However, the mechanisms underlying the age-associated increase in risk for diabetes and diabetes-related cardiovascular disease remain poorly understood. Moreover, because of the heterogeneity of the older population, a lack of understanding of the biology of aging, and inadequate study of the effects of treatments on traditional complications and geriatric conditions associated with diabetes, no consensus exists on the optimal interventions for older diabetic adults. The Association of Specialty Professors, along with the National Institute on Aging, the National Institute of Diabetes and Digestive and Kidney Diseases, the National Heart, Lung, and Blood Institute, and the American Diabetes Association, held a workshop, summarized in this Perspective, to discuss current knowledge regarding diabetes and cardiovascular disease in older adults, identify gaps, and propose questions to guide future research.
Load More