YC
Yuexin Chen
Author with expertise in Neonatal Lung Development and Respiratory Morbidity
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
304
h-index:
5
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
94

Ex vivotissue perturbations coupled to single cell RNA-seq reveal multi-lineage cell circuit dynamics in human lung fibrogenesis

Niklas Lang et al.Jan 16, 2023
ABSTRACT Pulmonary fibrosis develops as a consequence of failed regeneration after injury. Analyzing mechanisms of regeneration and fibrogenesis directly in human tissue has been hampered by the lack of organotypic models and analytical techniques. In this work, we coupled ex vivo cytokine and drug perturbations of human precision-cut lung slices (hPCLS) with scRNAseq and induced a multi-lineage circuit of fibrogenic cell states in hPCLS, which we show to be highly similar to the in vivo cell circuit in a multi-cohort lung cell atlas from pulmonary fibrosis patients. Using micro-CT staged patient tissues, we characterized the appearance and interaction of myofibroblasts, an ectopic endothelial cell state and basaloid epithelial cells in the thickened alveolar septum of early-stage lung fibrosis. Induction of these states in the ex vivo hPCLS model provides evidence that the basaloid cell state was derived from alveolar type-2 cells, whereas the ectopic endothelial cell state emerged from capillary cell plasticity. Cell-cell communication routes in patients were largely conserved in the hPCLS model and anti-fibrotic drug treatments showed highly cell type specific effects. Our work provides an experimental framework for perturbational single cell genomics directly in human lung tissue that enables analysis of tissue homeostasis, regeneration and pathology. We further demonstrate that hPCLS offers novel avenues for scalable, high-resolution drug testing to accelerate anti-fibrotic drug development and translation.
94
Citation4
0
Save
0

Iron metabolism in a mouse model of hepatocellular carcinoma

Dilay Yilmaz et al.Jan 16, 2025
Hepatocellular carcinoma (HCC) remains the most prevalent type of primary liver cancer worldwide. p53 is one of the most frequently mutated tumor-suppressor genes in HCC and its deficiency in hepatocytes triggers tumor formation in mice. To investigate iron metabolism during liver carcinogenesis, we employed a model of chronic carbon tetrachloride injections in liver-specific p53-deficient mice to induce liver fibrosis, cirrhosis and subsequent carcinogenesis. A transcriptome analysis of liver carcinoma was employed to identify p53-dependent gene expression signatures with subsequent in-depth analysis of iron metabolic parameters being conducted locally within liver cancers and at systemic levels. We show that all mutant mice developed liver cancer by 36-weeks of age in contrast to 3.4% tumors identified in control mice. All liver cancers with a p53-deficient background exhibited a local iron-poor phenotype with a "high transferrin receptor 1 (Tfr1) and low hepcidin (Hamp)" signature. At systemic levels, iron deficiency was restricted to female mice. Additionally, liver tumorigenesis correlated with selective deficits of selenium, zinc and manganese. Our data show that iron deficiency is a prevalent phenomenon in p53-deficient liver cancers, which is associated with alterations in Hamp and Tfr1 and a poor prognosis in mice and patients.