SB
Steven Brown
Author with expertise in Metabolic Engineering and Synthetic Biology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(77% Open Access)
Cited by:
3,081
h-index:
66
/
i10-index:
214
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Genetic Basis for Bacterial Mercury Methylation

Jerry Parks et al.Feb 8, 2013
+12
M
A
J
Mercury Methylating Microbes Mercury (Hg) most commonly becomes bioavailable and enters the food web as the organic form methylmercury, where it induces acute toxicity effects that can be magnified up the food chain. But most natural and anthropogenic Hg exists as inorganic Hg 2+ and is only transformed into methylmercury by anaerobic microorganisms—typically sulfur-reducing bacteria. Using comparative genomics, Parks et al. (p. 1332 , published online 7 February; see the Perspective by Poulain and Barkay ) identified two genes that encode a corrinoid and iron-sulfur proteins in six known Hg-methylating bacteria but were absent in nonmethylating bacteria. In two distantly related model Hg-methylating bacteria, deletion of either gene—or both genes simultaneously—reduced the ability for the bacteria to produce methylmercury but did not impair cellular growth. The presence of this two-gene cluster in several other bacterial and lineages for which genome sequences are available suggests the ability to produce methylmercury may be more broadly distributed in the microbial world than previously recognized.
0
Citation853
0
Save
0

Mercury Methylation by Novel Microorganisms from New Environments

Cynthia Gilmour et al.Sep 11, 2013
+7
A
M
C
Microbial mercury (Hg) methylation transforms a toxic trace metal into the highly bioaccumulated neurotoxin methylmercury (MeHg). The lack of a genetic marker for microbial MeHg production has prevented a clear understanding of Hg-methylating organism distribution in nature. Recently, a specific gene cluster (hgcAB) was linked to Hg methylation in two bacteria.1 Here we test if the presence of hgcAB orthologues is a reliable predictor of Hg methylation capability in microorganisms, a necessary confirmation for the development of molecular probes for Hg-methylation in nature. Although hgcAB orthologues are rare among all available microbial genomes, organisms are much more phylogenetically and environmentally diverse than previously thought. By directly measuring MeHg production in several bacterial and archaeal strains encoding hgcAB, we confirmed that possessing hgcAB predicts Hg methylation capability. For the first time, we demonstrated Hg methylation in a number of species other than sulfate- (SRB) and iron- (FeRB) reducing bacteria, including methanogens, and syntrophic, acetogenic, and fermentative Firmicutes. Several of these species occupy novel environmental niches for Hg methylation, including methanogenic habitats such as rice paddies, the animal gut, and extremes of pH and salinity. Identification of these organisms as Hg methylators now links methylation to discrete gene markers in microbial communities.
0
Citation635
0
Save
0

A genomic catalog of Earth’s microbiomes

Stephen Nayfach et al.Nov 9, 2020
+84
R
S
S
Abstract The reconstruction of bacterial and archaeal genomes from shotgun metagenomes has enabled insights into the ecology and evolution of environmental and host-associated microbiomes. Here we applied this approach to >10,000 metagenomes collected from diverse habitats covering all of Earth’s continents and oceans, including metagenomes from human and animal hosts, engineered environments, and natural and agricultural soils, to capture extant microbial, metabolic and functional potential. This comprehensive catalog includes 52,515 metagenome-assembled genomes representing 12,556 novel candidate species-level operational taxonomic units spanning 135 phyla. The catalog expands the known phylogenetic diversity of bacteria and archaea by 44% and is broadly available for streamlined comparative analyses, interactive exploration, metabolic modeling and bulk download. We demonstrate the utility of this collection for understanding secondary-metabolite biosynthetic potential and for resolving thousands of new host linkages to uncultivated viruses. This resource underscores the value of genome-centric approaches for revealing genomic properties of uncultivated microorganisms that affect ecosystem processes.
0
Citation595
0
Save
0

Global prevalence and distribution of genes and microorganisms involved in mercury methylation

Mircea Podar et al.Oct 2, 2015
+6
C
C
M
Mercury (Hg) methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). The highly conserved nature of the recently identified Hg methylation genes hgcAB provides a foundation for broadly evaluating spatial and niche-specific patterns of microbial Hg methylation potential in nature. We queried hgcAB diversity and distribution in >3500 publicly available microbial metagenomes, encompassing a broad range of environments and generating a new global view of Hg methylation potential. The hgcAB genes were found in nearly all anaerobic (but not aerobic) environments, including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human and mammalian microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate digestive tracts, thawing permafrost soils, coastal "dead zones," soils, sediments, and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups capable of methylating Hg emerged, including lineages having no cultured representatives. Phylogenetic analysis points to an evolutionary relationship between hgcA and genes encoding corrinoid iron-sulfur proteins functioning in the ancient Wood-Ljungdahl carbon fixation pathway, suggesting that methanogenic Archaea may have been the first to perform these biotransformations.
0
Citation388
0
Save
0

Effects of Engineered Cerium Oxide Nanoparticles on Bacterial Growth and Viability

Dale Pelletier et al.Oct 16, 2010
+10
G
A
D
ABSTRACT Interest in engineered nanostructures has risen in recent years due to their use in energy conservation strategies and biomedicine. To ensure prudent development and use of nanomaterials, the fate and effects of such engineered structures on the environment should be understood. Interactions of nanomaterials with environmental microorganisms are inevitable, but the general consequences of such interactions remain unclear, due to a lack of standard methods for assessing such interactions. Therefore, we have initiated a multianalytical approach to understand the interactions of synthesized nanoparticles with bacterial systems. These efforts are focused initially on cerium oxide nanoparticles and model bacteria in order to evaluate characterization procedures and the possible fate of such materials in the environment. The growth and viability of the Gram-negative species Escherichia coli and Shewanella oneidensis , a metal-reducing bacterium, and the Gram-positive species Bacillus subtilis were examined relative to cerium oxide particle size, growth media, pH, and dosage. A hydrothermal synthesis approach was used to prepare cerium oxide nanoparticles of defined sizes in order to eliminate complications originating from the use of organic solvents and surfactants. Bactericidal effects were determined from MIC and CFU measurements, disk diffusion tests, and live/dead assays. For E. coli and B. subtilis , clear strain- and size-dependent inhibition was observed, whereas S. oneidensis appeared to be unaffected by the particles. Transmission electron microscopy along with microarray-based transcriptional profiling was used to understand the response mechanism of the bacteria. Use of multiple analytical approaches adds confidence to toxicity assessments, while the use of different bacterial systems highlights the potential wide-ranging effects of nanomaterial interactions in the environment.
0
Citation364
0
Save
106

Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale

Fungmin Liew et al.Feb 21, 2022
+24
T
R
F
Many industrial chemicals that are produced from fossil resources could be manufactured more sustainably through fermentation. Here we describe the development of a carbon-negative fermentation route to producing the industrially important chemicals acetone and isopropanol from abundant, low-cost waste gas feedstocks, such as industrial emissions and syngas. Using a combinatorial pathway library approach, we first mined a historical industrial strain collection for superior enzymes that we used to engineer the autotrophic acetogen Clostridium autoethanogenum. Next, we used omics analysis, kinetic modeling and cell-free prototyping to optimize flux. Finally, we scaled-up our optimized strains for continuous production at rates of up to ~3 g/L/h and ~90% selectivity. Life cycle analysis confirmed a negative carbon footprint for the products. Unlike traditional production processes, which result in release of greenhouse gases, our process fixes carbon. These results show that engineered acetogens enable sustainable, high-efficiency, high-selectivity chemicals production. We expect that our approach can be readily adapted to a wide range of commodity chemicals.
106
Citation220
1
Save
0

Mother machine image analysis with MM3

John Sauls et al.Oct 18, 2019
+5
S
J
J
The mother machine is a microfluidic device for high-throughput time-lapse imaging of microbes. Here, we present MM3, a complete and modular image analysis pipeline. MM3 turns raw mother machine images, both phase contrast and fluorescence, into a data structure containing cells with their measured features. MM3 employs machine learning and non-learning algorithms, and is implemented in Python. MM3 is easy to run as a command line tool with the occasional graphical user interface on a PC or Mac. A typical mother machine experiment can be analyzed within one day. It has been extensively tested, is well documented and publicly available via Github.
6

Tools and methods for high-throughput single-cell imaging with the mother machine

Ryan Thiermann et al.Mar 29, 2023
+8
G
M
R
Despite much progress, image processing remains a significant bottleneck for high-throughput analysis of microscopy data. One popular platform for single-cell time-lapse imaging is the mother machine, which enables long-term tracking of microbial cells under precisely controlled growth conditions. While several mother machine image analysis pipelines have been developed in the past several years, adoption by a non-expert audience remains a challenge. To fill this gap, we implemented our own software, MM3, as a plugin for the multidimensional image viewer napari. napari-MM3 is a complete and modular image analysis pipeline for mother machine data, which takes advantage of the high-level interactivity of napari. Here, we give an overview of napari-MM3 and test it against several well-designed and widely-used image analysis pipelines, including BACMMAN and DeLTA. Researchers often analyze mother machine data with custom scripts using varied image analysis methods, but a quantitative comparison of the output of different pipelines has been lacking. To this end, we show that key single-cell physiological parameter correlations and distributions are robust to the choice of analysis method. However, we also find that small changes in thresholding parameters can systematically alter parameters extracted from single-cell imaging experiments. Moreover, we explicitly show that in deep learning based segmentation, "what you put is what you get" (WYPIWYG) - i.e., pixel-level variation in training data for cell segmentation can propagate to the model output and bias spatial and temporal measurements. Finally, while the primary purpose of this work is to introduce the image analysis software that we have developed over the last decade in our lab, we also provide information for those who want to implement mother-machine-based high-throughput imaging and analysis methods in their research.
19

Intestinal Transgene Delivery with Native E. coli Chassis Allows Persistent Physiological Changes

Baylee Russell et al.Nov 12, 2021
+15
S
A
B
ABSTRACT Live bacterial therapeutics (LBT) could reverse disease by engrafting in the gut and providing persistent beneficial functions in the host. However, attempts to functionally manipulate the gut microbiome of conventionally-raised (CR) hosts have been unsuccessful, because engineered microbial organisms (i.e., chassis) cannot colonize the hostile luminal environment. In this proof-of-concept study, we use native bacteria as chassis for transgene delivery to impact CR host physiology. Native Escherichia coli isolated from stool cultures of CR mice were modified to express functional bacterial (bile salt hydrolase) and eukaryotic (Interleukin-10) genes. Reintroduction of these strains induces perpetual engraftment in the intestine. In addition, engineered native E. coli can induce functional changes that affect host physiology and reverse pathology in CR hosts months after administration. Thus, using native bacteria as chassis to “knock-in” specific functions allows mechanistic studies of specific microbial activities in the microbiome of CR hosts, and enables LBT with curative intent.
19
Citation2
0
Save
0

Autotrophic adaptive laboratory evolution of the acetogen Clostridium autoethanogenum delivers the gas-fermenting strain LAbrini with superior growth, products, and robustness

Henri Ingelman et al.Jun 12, 2024
+19
R
K
H
Microbes able to convert gaseous one-carbon (C1) waste feedstocks are increasingly important to transition to the sustainable production of renewable chemicals and fuels. Acetogens are interesting biocatalysts since gas fermentation using Clostridium autoethanogenum has been commercialised. However, most acetogen strains need complex nutrients, display slow growth, and are not robust for bioreactor fermentations. In this work, we used three different and independent adaptive laboratory evolution (ALE) strategies to evolve the wild-type C. autoethanogenum to grow faster, without yeast extract and to be robust in operating continuous bioreactor cultures. Multiple evolved strains with improved phenotypes were isolated on minimal media with one strain, named "LAbrini", exhibiting superior performance regarding the maximum specific growth rate, product profile, and robustness in continuous cultures. Whole-genome sequencing of the evolved strains identified 25 mutations. Of particular interest are two genes that acquired seven different mutations across the three ALE strategies, potentially as a result of convergent evolution. Reverse genetic engineering of mutations in potentially sporulation-related genes CLAU_3129 (spo0A) and CLAU_1957 recovered all three superior features of our ALE strains through triggering significant proteomic rearrangements. This work provides a robust C. autoethanogenum strain "LAbrini" to accelerate phenotyping and genetic engineering and to better understand acetogen metabolism.
0
Citation1
0
Save
Load More