AR
Andrea Reid
Author with expertise in Molecular Mechanisms of Muscle Regeneration and Atrophy
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
9
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
3

miR-486 is an epigenetic modulator of Duchenne muscular dystrophy pathologies

Rylie Hightower et al.Jun 15, 2021
Abstract Duchenne muscular dystrophy (DMD) is an X-linked progressive muscle disorder resulting in muscle weakness and cardiomyopathy. MicroRNAs have been shown to play essential roles in muscle development, metabolism, and disease pathologies. We demonstrated that miR-486 expression is reduced in DMD muscles and its expression levels correlate with dystrophic disease severity. MicroRNA-486 knockout mice developed disrupted myofiber architecture, decreased myofiber size, decreased locomotor activity, increased cardiac fibrosis, and metabolic defects that were exacerbated on the dystrophic mdx 5cv background. We integrated RNA-sequencing and chimeric eCLIP-sequencing data to identify direct in vivo targets of miR-486 and associated dysregulated gene signatures in skeletal muscle. In comparison to our DMD mouse muscle transcriptomes, we identified several of these miR-486 muscle targets including known modulators of dystrophinopathy disease symptoms. Together, our studies identify miR-486 as a driver of muscle remodeling in DMD, a useful biomarker for dystrophic disease progression, and highlight chimeric eCLIP-sequencing as a useful tool to identify direct in vivo microRNA target transcripts. Abstract Figure
3
Citation4
0
Save
0

DOCK3 is a dosage-sensitive regulator of skeletal muscle and Duchenne muscular dystrophy-associated pathologies.

Andrea Reid et al.Mar 28, 2020
DOCK3 is a member of the DOCK family of guanine nucleotide exchange factors that function to regulate cell migration, fusion, and overall viability. Previously, we identified a miR-486/Dock3 signaling cascade that was dysregulated in dystrophin-deficient muscle which resulted in the overexpression of DOCK3, however not much else is known about the role of DOCK3 in muscle. In this work, we characterize the functional role of DOCK3 in normal and dystrophic skeletal muscle. By utilizing Dock3 global knockout (Dock3 KO) mice, we found reducing Dock3 gene via haploinsufficiency in DMD mice improved dystrophic muscle histology, however complete loss of Dock3 worsened overall muscle function on a dystrophin-deficient background. Consistent with this, Dock3 KO mice have impaired muscle architecture and myogenic differentiation defects. Moreover, transcriptomic analyses of Dock3 knockout muscles reveal a decrease in factors known for myogenesis, suggesting a possible mechanism of action. These studies identify DOCK3 as a novel modulator of muscle fusion and muscle health and may yield additional therapeutic targets for treating dystrophic muscle symptoms.