SC
Subham Choudhury
Author with expertise in Metabolic Engineering and Synthetic Biology
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
1
h-index:
2
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Reconstructing Kinetic Models for Dynamical Studies of Metabolism using Generative Adversarial Networks

Subham Choudhury et al.Jan 6, 2022
Abstract Kinetic models of metabolic networks relate metabolic fluxes, metabolite concentrations, and enzyme levels through well-defined mechanistic relations rendering them an essential tool for systems biology studies aiming to capture and understand the behavior of living organisms. However, due to the lack of information about the kinetic properties of enzymes and the uncertainties associated with available experimental data, traditional kinetic modeling approaches often yield only a few or no kinetic models with desirable dynamical properties making the computational analysis unreliable and computationally inefficient. We present REKINDLE (REconstruction of KINetic models using Deep LEarning), a deep-learning-based framework for efficiently generating large-scale kinetic models with dynamic properties matching the ones observed in living organisms. We showcase REKINDLE’s efficiency and capabilities through three studies where we: (i) generate large populations of kinetic models that allow reliable in silico testing of hypotheses and systems biology designs, (ii) navigate the phenotypic space by leveraging the transfer learning capability of generative adversarial networks, demonstrating that the generators trained for one physiology can be fine-tuned for another physiology using a low amount of data, and (iii) expand upon existing datasets, making them amenable to thorough computational biology and data-science analyses. The results show that data-driven neural networks assimilate implicit kinetic knowledge and structure of metabolic networks and generate novel kinetic models with tailored properties and statistical diversity. We anticipate that our framework will advance our understanding of metabolism and accelerate future research in health, biotechnology, and systems and synthetic biology. REKINDLE is available as an open-access tool.
0

Impact of phylogeny on the inference of functional sectors from protein sequence data

Nicola Dietler et al.Apr 26, 2024
Statistical analysis of multiple sequence alignments of homologous proteins has revealed groups of coevolving amino acids called sectors. These groups of amino-acid sites feature collective correlations in their amino-acid usage, and they are associated to functional properties. Modeling showed that natural selection on an additive functional trait of a protein is generically expected to give rise to a functional sector. These modeling results motivated a principled method, called ICOD, which is designed to identify functional sectors, as well as mutational effects, from sequence data. However, a challenge for all methods aiming to identify sectors from multiple sequence alignments is that correlations in amino-acid usage can also arise from the mere fact that homologous sequences share common ancestry, i.e. from phylogeny. Here, we generate controlled synthetic data from a minimal model comprising both phylogeny and functional sectors. We use this data to dissect the impact of phylogeny on sector identification and on mutational effect inference by different methods. We find that ICOD is most robust to phylogeny, but that conservation is also quite robust. Next, we consider natural multiple sequence alignments of protein families for which deep mutational scan experimental data is available. We show that in this natural data, conservation and ICOD best identify sites with strong functional roles, in agreement with our results on synthetic data. Importantly, these two methods have different premises, since they respectively focus on conservation and on correlations. Thus, their joint use can reveal complementary information.
1

Generative machine learning produces kinetic models that accurately characterize intracellular metabolic states

Subham Choudhury et al.Aug 30, 2024
Generating large omics datasets has become routine for gaining insights into cellular processes, yet deciphering these datasets to determine metabolic states remains challenging. Kinetic models can help integrate omics data by explicitly linking metabolite concentrations, metabolic fluxes and enzyme levels. Nevertheless, determining the kinetic parameters that underlie cellular physiology poses notable obstacles to the widespread use of these mathematical representations of metabolism. Here we present RENAISSANCE, a generative machine learning framework for efficiently parameterizing large-scale kinetic models with dynamic properties matching experimental observations. Through seamless integration of diverse omics data and other relevant information, including extracellular medium composition, physicochemical data and expertise of domain specialists, RENAISSANCE accurately characterizes intracellular metabolic states in Escherichia coli. It also estimates missing kinetic parameters and reconciles them with sparse experimental data, substantially reducing parameter uncertainty and improving accuracy. This framework will be valuable for researchers studying metabolic variations involving changes in metabolite and enzyme levels and enzyme activity in health and biotechnology. Despite the availability of large omics datasets, determining intracellular metabolic states is challenging. Now a generative machine learning framework called RENAISSANCE has been developed to estimate missing kinetic parameters and determine time-resolved metabolic reaction rates and metabolite concentrations without requiring training data.
26

Generative machine learning produces kinetic models that accurately characterize intracellular metabolic states

Subham Choudhury et al.Feb 22, 2023
Abstract Generating large omics datasets has become routine practice to gain insights into cellular processes, yet deciphering such massive datasets and determining intracellular metabolic states remains challenging. Kinetic models of metabolism play a critical role in integrating omics data, as they provide explicit connections between metabolite concentrations, metabolic fluxes, and enzyme levels. However, the difficulties in determining kinetic parameters that govern cellular physiology hinder the broader adoption of these models by the research community. Here we present RENAISSANCE (REconstruction of dyNAmIc models through Stratified Sampling using Artificial Neural networks and Concepts of Evolution strategies), a generative machine learning framework for efficiently parameterizing large-scale kinetic models with dynamic properties matching experimental observations. Through seamless integration and consolidation of diverse omics data and other relevant information, like extracellular medium composition, physicochemical data, and expertise of domain specialists, we show that the proposed framework accurately characterizes unknown intracellular metabolic states, including metabolic fluxes and metabolite concentrations, in E. coli ’s metabolic network. Moreover, we show that RENAISSANCE successfully estimates missing kinetic parameters and reconciles them with sparse and noisy experimental data, resulting in a substantial reduction in parameter uncertainty and a notable improvement in the accuracy and reliability of the parameter estimates. The proposed framework will be invaluable for researchers who seek to analyze metabolic variations involving changes in metabolite and enzyme levels and enzyme activity in health and biotechnological studies.