MM
Medha Majety
Author with expertise in Chimeric Antigen Receptor T Cell Therapy
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
4
h-index:
3
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
5

CTLA-4 tail fusion enhances CAR-T anti-tumor immunity

Xiaoyu Zhou et al.Mar 15, 2023
+10
R
H
X
Abstract Chimeric antigen receptor (CAR) T cells are powerful therapeutics; however, their efficacy is often hindered by critical hurdles. Here, utilizing the endocytic feature of the cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) cytoplasmic tail (CT), we reprogram CAR function and substantially enhance CAR-T efficacy in vivo . CAR-T cells with monomeric, duplex, or triplex CTLA-4 CTs (CCTs) fused to the C-terminus of CAR exhibit a progressive increase in cytotoxicity under repeated stimulation, accompanied by reduced activation and production of pro-inflammatory cytokines. Further characterization reveals that CARs with increasing CCT fusion show a progressively lower surface expression, regulated by their constant endocytosis, recycling and degradation under steady state. The molecular dynamics of reengineered CAR with CCT fusion results in reduced CAR-mediated trogocytosis, loss of tumor antigen, and improved CAR-T survival. CARs with either monomeric (CAR-1CCT) or duplex CCTs (CAR-2CCT) have superior anti-tumor efficacy in a relapsed leukemia model. Single-cell RNA sequencing and flow cytometry analysis reveal that CAR-2CCT cells retain a stronger central memory phenotype and exhibit increased persistence. These findings illuminate a unique strategy for engineering therapeutic T cells and improving CAR-T function through synthetic CCT fusion, which is orthogonal to other cell engineering techniques.
5
Citation2
0
Save
2

Multiplexed inhibition of immunosuppressive genes with Cas13d for on-demand combinatorial cancer immunotherapy

Feifei Zhang et al.Mar 15, 2023
+4
M
R
F
Checkpoint blockade immunotherapy is a potent class of cancer treatment, however, the complex immunosuppressive tumor microenvironment (TME) often requires multi-agent combinations to be effective. Current cancer immunotherapy combination approaches are cumbersome, usually involving one-drug-at-a-time scheme. Here, we devise Multiplex Universal Combinatorial Immunotherapy via Gene-silencing (MUCIG), as a versatile approach for combinatorial cancer immunotherapy. We harness CRISPR-Cas13d to efficiently target multiple endogenous immunosuppressive genes on demand, allowing us to silence various combinations of multiple immunosuppressive factors in the TME. Intratumoral AAV-mediated administration of MUCIG (AAV-MUCIG) elicits significant anti-tumor activity with several Cas13d gRNA compositions. TME target expression analysis driven optimization led to a simplified off-the-shelf MUCIG targeting a four gene combination (PGGC: Pdl1, Galectin9, Galectin3 and Cd47 ). AAV-PGGC shows significant in vivo efficacy in syngeneic tumor models. Single cell and flow profiling revealed that AAV-PGGC remodeled the TME by increasing CD8 + T cell infiltration and reducing myeloid-derived immunosuppressive cells (MDSCs). MUCIG thus serves as a universal method to silence multiple immune genes in vivo, and can be delivered via AAV as a therapeutic approach.
2
Citation2
0
Save
1

Cas12a/Cpf1 knock-in mice enable efficient multiplexed immune cell engineering

Matthew Dong et al.Mar 14, 2023
+14
X
K
M
Summary Cas9 transgenic animals have drastically accelerated the discovery of novel immune modulators. But due to its inability to process its own CRISPR RNAs (crRNAs), simultaneous multiplexed gene perturbations using Cas9 remains limited, especially by pseudoviral vectors. Cas12a/Cpf1, however, can process concatenated crRNA arrays for this purpose. Here, we created conditional and constitutive LbCas12a knock-in transgenic mice. With these mice, we demonstrated efficient multiplexed gene editing and surface protein knockdown within individual primary immune cells. We showed genome editing across multiple types of primary immune cells including CD4 and CD8 T cells, B cells, and bone-marrow derived dendritic cells. These transgenic animals, along with the accompanying viral vectors, together provide a versatile toolkit for a broad range of ex vivo and in vivo gene editing applications, including fundamental immunological discovery and immune gene engineering.
0

High-fidelity enhanced AsCas12a knock-in mice for efficient multiplexed gene editing, disease modeling and orthogonal immunogenetics

Kaizhi Tang et al.Mar 16, 2024
+20
L
S
K
Abstract The advancement of CRISPR gene editing technology, especially the development of Cas9 knock-in mice, has significantly boosted the functional discovery of various genetics factors in diverse fields including genetics, genomics, immunology, and the biology of cancer. However, the pleiotropic effects on human disease and the complex nature of gene interaction networks require a knock-in mouse model capable of simultaneous multiplexed gene perturbation. Here, we present the generation and applications of Cre-dependent conditional and constitutive high-fidelity, enhanced AsCas12a (enAsCas12a-HF1) Rosa26-knock-in mice in the C57BL/6 background. With these mouse strains, we demonstrate highly efficient and multiplexed in vivo and ex vivo genome engineering as applied to lipid nanoparticle (LNP)-RNA-based liver protein targeting, AAV-based tumor modeling, and retrovirus-based immune cell engineering. By integrating with a dCas9-SPH CRISPR activation transgenic strain, we establish a simultaneous dual gene activation and knockout (DAKO) system that showcases the modular potential of these enAsCas12a-HF1 mice. Importantly, constitutive expression of enAsCas12a-HF1 does not lead to any discernable pathological differences as compared to the C57BL/6 background strain. These knock-in mice and the accompanying delivery methods would empower the deconvolution of complex gene interaction networks in broad areas of research.