DJ
David Jacques
Author with expertise in Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(59% Open Access)
Cited by:
4,511
h-index:
36
/
i10-index:
68
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

HIV-1 evades innate immune recognition through specific cofactor recruitment

Jane Rasaiyaah et al.Nov 1, 2013
Human immunodeficiency virus (HIV)-1 is shown here to depend on the recruitment to the HIV-1 capsid of specific cofactors involved in orchestrating nuclear entry and targeting; when these capsid–cofactor interactions are prevented either by virus mutation, cofactor depletion or pharmacological inhibition of cofactor recruitment, viral DNA can be detected by innate immune sensors. Remarkably, human immunodeficiency virus (HIV)-1 infects macrophages — immune cells that are equipped to detect pathogens and mediate innate immune responses — without stimulating innate immunity. Greg Towers and colleagues now show that this depends on the recruitment to the HIV-1 capsid of specific cofactors that are involved in orchestrating nuclear entry and targeting. When these capsid–cofactor interactions are prevented either by virus mutation, cofactor depletion or pharmacological inhibition of cofactor recruitment, viral DNA can be detected by innate immune sensors, including cyclic GMP-AMP synthase. Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively1,2, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.
0
Citation415
0
Save
0

Host Cofactors and Pharmacologic Ligands Share an Essential Interface in HIV-1 Capsid That Is Lost upon Disassembly

Amanda Price et al.Oct 30, 2014
The HIV-1 capsid is involved in all infectious steps from reverse transcription to integration site selection, and is the target of multiple host cell and pharmacologic ligands. However, structural studies have been limited to capsid monomers (CA), and the mechanistic basis for how these ligands influence infection is not well understood. Here we show that a multi-subunit interface formed exclusively within CA hexamers mediates binding to linear epitopes within cellular cofactors NUP153 and CPSF6, and is competed for by the antiretroviral compounds PF74 and BI-2. Each ligand is anchored via a shared phenylalanine-glycine (FG) motif to a pocket within the N-terminal domain of one monomer, and all but BI-2 also make essential interactions across the N-terminal domain: C-terminal domain (NTD:CTD) interface to a second monomer. Dissociation of hexamer into CA monomers prevents high affinity interaction with CPSF6 and PF74, and abolishes binding to NUP153. The second interface is conformationally dynamic, but binding of NUP153 or CPSF6 peptides is accommodated by only one conformation. NUP153 and CPSF6 have overlapping binding sites, but each makes unique CA interactions that, when mutated selectively, perturb cofactor dependency. These results reveal that multiple ligands share an overlapping interface in HIV-1 capsid that is lost upon viral disassembly.
0

2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: an update

Jill Trewhella et al.Aug 18, 2017
In 2012, preliminary guidelines were published addressing sample quality, data acquisition and reduction, presentation of scattering data and validation, and modelling for biomolecular small-angle scattering (SAS) experiments. Biomolecular SAS has since continued to grow and authors have increasingly adopted the preliminary guidelines. In parallel, integrative/hybrid determination of biomolecular structures is a rapidly growing field that is expanding the scope of structural biology. For SAS to contribute maximally to this field, it is essential to ensure open access to the information required for evaluation of the quality of SAS samples and data, as well as the validity of SAS-based structural models. To this end, the preliminary guidelines for data presentation in a publication are reviewed and updated, and the deposition of data and associated models in a public archive is recommended. These guidelines and recommendations have been prepared in consultation with the members of the International Union of Crystallography (IUCr) Small-Angle Scattering and Journals Commissions, the Worldwide Protein Data Bank (wwPDB) Small-Angle Scattering Validation Task Force and additional experts in the field.
1

SARS-CoV-2 proteases cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species and the search for reservoir hosts

Mehdi Moustaqil et al.Jun 5, 2020
Abstract The genome of SARS-CoV-2 (SARS2) encodes for two viral proteases (NSP3/ papain-like protease and NSP5/ 3C-like protease or major protease) that are responsible for cleaving viral polyproteins for successful replication. NSP3 and NSP5 of SARS-CoV (SARS1) are known interferon antagonists. Here, we examined whether the protease function of SARS2 NSP3 and NSP5 target proteins involved in the host innate immune response. We designed a fluorescent based cleavage assay to rapidly screen the protease activity of NSP3 and NSP5 on a library of 71 human innate immune proteins (HIIPs), covering most pathways involved in human innate immunity. By expressing each of these HIIPs with a genetically encoded fluorophore in a cell-free system and titrating in the recombinant protease domain of NSP3 or NSP5, we could readily detect cleavage of cognate HIIPs on SDS-page gels. We identified 3 proteins that were specifically and selectively cleaved by NSP3 or NSP5: IRF-3, and NLRP12 and TAB1, respectively. Direct cleavage of IRF3 by NSP3 could explain the blunted Type- I IFN response seen during SARS-CoV-2 infections while NSP5 mediated cleavage of NLRP12 and TAB1 point to a molecular mechanism for enhanced production of IL-6 and inflammatory response observed in COVID-19 patients. Surprisingly, both NLRP12 and TAB1 have each two distinct cleavage sites. We demonstrate that in mice, the second cleavage site of NLRP12 is absent. We pushed this comparative alignment of IRF-3 and NLRP12 homologs and show that the lack or presence of cognate cleavage motifs in IRF-3 and NLRP12 could contribute to the presentation of disease in cats and tigers, for example. Our findings provide an explanatory framework for in-depth studies into the pathophysiology of COVID-19 and should facilitate the search or development of more effective animal models for severe COVID-19. Finally, we discovered that one particular species of bats, David’s Myotis, possesses the five cleavage sites found in humans for NLRP12, TAB1 and IRF3. These bats are endemic from the Hubei province in China and we discuss its potential role as reservoir for the evolution of SARS1 and SASR2.
1
Citation12
0
Save
Load More