DT
Desiree Tillo
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(80% Open Access)
Cited by:
2,477
h-index:
15
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The DNA-encoded nucleosome organization of a eukaryotic genome

N. Kaplan et al.Dec 17, 2008
+8
Y
I
N
Nucleosome organization is critical for gene regulation. In living cells this organization is determined by multiple factors, including the action of chromatin remodellers, competition with site-specific DNA-binding proteins, and the DNA sequence preferences of the nucleosomes themselves. However, it has been difficult to estimate the relative importance of each of these mechanisms in vivo, because in vivo nucleosome maps reflect the combined action of all influencing factors. Here we determine the importance of nucleosome DNA sequence preferences experimentally by measuring the genome-wide occupancy of nucleosomes assembled on purified yeast genomic DNA. The resulting map, in which nucleosome occupancy is governed only by the intrinsic sequence preferences of nucleosomes, is similar to in vivo nucleosome maps generated in three different growth conditions. In vitro, nucleosome depletion is evident at many transcription factor binding sites and around gene start and end sites, indicating that nucleosome depletion at these sites in vivo is partly encoded in the genome. We confirm these results with a micrococcal nuclease-independent experiment that measures the relative affinity of nucleosomes for approximately 40,000 double-stranded 150-base-pair oligonucleotides. Using our in vitro data, we devise a computational model of nucleosome sequence preferences that is significantly correlated with in vivo nucleosome occupancy in Caenorhabditis elegans. Our results indicate that the intrinsic DNA sequence preferences of nucleosomes have a central role in determining the organization of nucleosomes in vivo.
0
Citation1,166
0
Save
0

A high-resolution atlas of nucleosome occupancy in yeast

William Lee et al.Sep 16, 2007
+4
N
D
W
0
Citation829
0
Save
0

A Library of Yeast Transcription Factor Motifs Reveals a Widespread Function for Rsc3 in Targeting Nucleosome Exclusion at Promoters

Gwenaël Badis et al.Dec 1, 2008
+20
H
E
G
The sequence specificity of DNA-binding proteins is the primary mechanism by which the cell recognizes genomic features. Here, we describe systematic determination of yeast transcription factor DNA-binding specificities. We obtained binding specificities for 112 DNA-binding proteins representing 19 distinct structural classes. One-third of the binding specificities have not been previously reported. Several binding sequences have striking genomic distributions relative to transcription start sites, supporting their biological relevance and suggesting a role in promoter architecture. Among these are Rsc3 binding sequences, containing the core CGCG, which are found preferentially ∼100 bp upstream of transcription start sites. Mutation of RSC3 results in a dramatic increase in nucleosome occupancy in hundreds of proximal promoters containing a Rsc3 binding element, but has little impact on promoters lacking Rsc3 binding sequences, indicating that Rsc3 plays a broad role in targeting nucleosome exclusion at yeast promoters.
0
Citation470
0
Save
29

The homeobox transcription factor DUXBL controls exit from totipotency

María Vega-Sendino et al.Sep 19, 2022
+9
P
T
M
ABSTRACT Upon exit from the totipotent 2-cell (2C) embryo stage, the 2C-associated transcriptional program needs to be efficiently silenced. However, the molecular mechanisms involved in this process remain mostly unknown. Here, we demonstrate that the 2C-specific transcription factor DUX directly induces the expression of DUXBL to promote this silencing. Indeed, DUX expression in Duxbl -knockout ESC causes increased induction of the 2C-transcriptional program, whereas DUXBL overexpression impairs 2C-associated transcription. CUT&RUN analyses show that DUXBL gains accessibility to DUX-bound regions in DUX-induced ESC while it is unable to bind those regions in uninduced cells. Mechanistically, we determined that DUXBL interacts with TRIM24 and TRIM33, two members of the tripartite motif superfamily involved in gene silencing and co-localizes with them in nuclear foci upon DUX expression. Furthermore, DUXBL downregulation in mouse zygotes leads to a penetrant 2C-stage arrest. Our data reveals an unexpected role for DUXBL in controlling the exit from totipotency.
29
Citation10
0
Save
37

CTCF is a Barrier for Totipotent-like Reprogramming

Teresa Olbrich et al.Dec 22, 2020
+13
D
M
T
SUMMARY Totipotent cells have the ability of generating embryonic and extra-embryonic tissues 1,2 . Interestingly, a rare population of cells with totipotent-like potential was identified within ESC cultures 3 . These cells, known as 2 cell (2C)-like cells, arise from ESC and display similar features to those found in the totipotent 2 cell embryo 2-4 . However, the molecular determinants of 2C-like conversion have not been completely elucidated. Here, we show that CTCF is a barrier for 2C-like reprogramming. Indeed, forced conversion to a 2C-like state by DUX expression was associated with DNA damage at a subset of CTCF binding sites. Endogenous or DUX-induced 2C-like ESC showed decreased CTCF enrichment at known binding sites, suggesting that acquisition of a totipotent-like state is associated with a highly dynamic chromatin architecture. Accordingly, depletion of CTCF in ESC efficiently promoted spontaneous and asynchronous conversion to a totipotent-like state. This phenotypic reprogramming was reversible upon restoration of CTCF levels. Furthermore, we showed that transcriptional activation of the ZSCAN4 cluster was necessary for successful 2C-like reprogramming. In summary, we revealed the intimate relation between CTCF and totipotent-like reprogramming.
37
Citation1
0
Save
12

The ETS Transcription Factor ERF controls the exit from the naïve pluripotent state

María Vega-Sendino et al.Feb 2, 2021
+7
D
T
M
The naïve epiblast undergoes a transition to a pluripotent primed state during embryo implantation. Despite the relevance of the FGF pathway during this period, little is known about the downstream effectors regulating this signaling. Here, we examined the molecular mechanisms coordinating the naïve to primed transition by using inducible ESC to genetically eliminate all RAS proteins. We show that differentiated RAS KO ESC remain trapped in an intermediate state of pluripotency with naïve-associated features. Elimination of the transcription factor ERF overcomes the developmental blockage of RAS-deficient cells by naïve enhancer decommissioning. Mechanistically, ERF regulates NANOG expression and ensures naïve pluripotency by strengthening naïve transcription factor binding at ESC enhancers. Moreover, ERF negatively regulates the expression of the de novo methyltransferase DNMT3B, which participates in the extinction of the naïve transcriptional program. Collectively, we demonstrated an essential role for ERF controlling the exit from naïve pluripotency during the progression to primed pluripotency. Teaser ERF is the MAPK-dependent switch controlling the transition between naïve and primed pluripotency during embryonic development.
12
Citation1
0
Save
0

Microenvironment shapes small-cell lung cancer neuroendocrine states and presents therapeutic opportunities

Parth Desai et al.Jun 1, 2024
+55
R
N
P
Small-cell lung cancer (SCLC) is the most fatal form of lung cancer. Intratumoral heterogeneity, marked by neuroendocrine (NE) and non-neuroendocrine (non-NE) cell states, defines SCLC, but the cell-extrinsic drivers of SCLC plasticity are poorly understood. To map the landscape of SCLC tumor microenvironment (TME), we apply spatially resolved transcriptomics and quantitative mass spectrometry-based proteomics to metastatic SCLC tumors obtained via rapid autopsy. The phenotype and overall composition of non-malignant cells in the TME exhibit substantial variability, closely mirroring the tumor phenotype, suggesting TME-driven reprogramming of NE cell states. We identify cancer-associated fibroblasts (CAFs) as a crucial element of SCLC TME heterogeneity, contributing to immune exclusion, and predicting exceptionally poor prognosis. Our work provides a comprehensive map of SCLC tumor and TME ecosystems, emphasizing their pivotal role in SCLC's adaptable nature, opening possibilities for reprogramming the TME-tumor communications that shape SCLC tumor states.
17

DECODING COMPLEXITY IN BIOMOLECULAR RECOGNITION OF DNA I-MOTIFS

Kamyar Yazdani et al.Apr 21, 2023
+2
D
S
K
DNA i-motifs (iMs) are non-canonical C-rich secondary structures implicated in numerous cellular processes. Though iMs exist throughout the genome, our understanding of iM recognition by proteins or small molecules is limited to a few examples. We designed a DNA microarray containing 10,976 genomic iM sequences to examine the binding profiles of four iM-binding proteins, mitoxantrone, and the iMab antibody. iMab microarray screens demonstrated that pH 6.5, 5% BSA buffer was optimal, and fluorescence was correlated with iM C-tract length. hnRNP K broadly recognizes diverse iM sequences, favoring 3-5 cytosine repeats flanked by thymine-rich loops of 1-3 nucleotides. Array binding mirrored public ChIP-Seq datasets, in which 35% of well-bound array iMs are enriched in hnRNP K peaks. In contrast, other reported iM-binding proteins had weaker binding or preferred G-quadruplex (G4) sequences instead. Mitoxantrone broadly binds both shorter iMs and G4s, consistent with an intercalation mechanism. These results suggest that hnRNP K may play a role in iM-mediated regulation of gene expression in vivo, whereas hnRNP A1 and ASF/SF2 are possibly more selective in their binding preferences. This powerful approach represents the most comprehensive investigation of how biomolecules selectively recognize genomic iMs to date.
0

Direct ionic stress sensing and mitigation by the transcription factor NFAT5

Chandni Khandwala et al.Jan 1, 2023
+8
B
P
C
Homeostatic control of intracellular ionic strength is essential for protein, organelle and genome function, yet mechanisms that sense and enable adaptation to ionic stress remain poorly understood in animals. We find that the transcription factor NFAT5 directly senses solution ionic strength using a C-terminal intrinsically disordered region. Both in intact cells and in a purified system, NFAT5 forms dynamic, reversible biomolecular condensates in response to increasing ionic strength. This self-associative property, conserved from insects to mammals, allows NFAT5 to accumulate in the nucleus and activate genes that restore cellular ion content. Mutations that reduce condensation or those that promote aggregation both reduce NFAT5 activity, highlighting the importance of optimally tuned associative interactions. Remarkably, human NFAT5 alone is sufficient to reconstitute a mammalian transcriptional response to ionic or hypertonic stress in yeast. Thus NFAT5 is both the sensor and effector of a cell-autonomous ionic stress response pathway in animal cells.
0

Microenvironment Shapes Cell State, Plasticity, and Heterogeneity of Small Cell Lung Cancer

Parth Desai et al.Feb 14, 2024
+58
S
D
P
Abstract Small-cell lung cancer (SCLC) is the most fatal form of lung cancer. Intra-tumoral heterogeneity, marked by neuroendocrine (NE) and non-neuroendocrine (non-NE) cell states, defines SCLC, but the drivers of SCLC plasticity are poorly understood. To map the landscape of SCLC tumor microenvironment (TME), we applied spatially resolved transcriptomics and quantitative mass spectrometry-based proteomics to metastatic SCLC tumors obtained via rapid autopsy. The phenotype and overall composition of non-malignant cells in the tumor microenvironment (TME) exhibits substantial variability, closely mirroring the tumor phenotype, suggesting TME-driven reprogramming of NE cell states. We identify cancer-associated fibroblasts (CAF) as a crucial element of SCLC TME heterogeneity, contributing to immune exclusion, and predicting an exceptionally poor prognosis. Together, our work provides the first comprehensive map of SCLC tumor and TME ecosystems, emphasizing their pivotal role in SCLCs adaptable nature, opening possibilities for re-programming the intercellular communications that shape SCLC tumor states. Abstract Figure