TS
Thomas Shaw
Author with expertise in Fluorescence Microscopy Techniques
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
6
h-index:
20
/
i10-index:
36
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
14

A method to estimate the effective point spread function of static single molecule localization microscopy images

Thomas Shaw et al.Mar 5, 2022
ABSTRACT Single molecule localization microscopy (SMLM) permits the visualization of cellular structures an order of magnitude smaller than the diffraction limit of visible light, and an accurate, objective evaluation of the resolution of an SMLM dataset is an essential aspect of the image processing and analysis pipeline. Here we present a simple method that uses the pair autocorrelation function evaluated both in space and time to measure the time-interval dependent effective point spread function of SMLM images of static samples. Using this approach, we demonstrate that experimentally obtained images typically have effective point spread functions that are broader than expected from the localization precision alone, due to additional uncertainty arising from factors such as drift and drift correction algorithms. The method is demonstrated on simulated localizations, DNA origami rulers, and cellular structures labelled by dye-conjugated antibodies, DNA-PAINT, or fluorescent fusion proteins. STATEMENT OF SIGNIFICANCE Single molecule localization microscopy (SMLM) is a class of imaging methods that resolve fluorescently labeled structures beyond the optical resolution limit of visible light. SMLM detects stochastically blinking labels over time, and localizes each blink with precision of order 10 nm. The effective resolution depends on factors such as signal-to-noise ratio, localization algorithm, and several post-processing steps such as stage drift correction. We present a method to evaluate this effective resolution by taking advantage of temporal correlations of fluorophore blinking to separate the distribution of pairs of localizations from the same molecule from those from different molecules. The method is robust on useful timescales for a range of SMLM probes.
4

Measuring the co-localization and dynamics of mobile proteins in live cells undergoing signaling responses

Sarah Shelby et al.Oct 17, 2022
ii. Summary/Abstract Single molecule imaging in live cells enables the study of protein interactions and dynamics as they participate in signaling processes. When combined with fluorophores that stochastically transition between fluorescent and reversible dark states, as in super-resolution localization imaging, labeled molecules can be visualized in single cells over time. This improvement in sampling enables the study of extended cellular responses at the resolution of single molecule localization. This chapter provides optimized experimental and analytical methods used to quantify protein interactions and dynamics within the membranes of adhered live cells. Importantly, the use of pair-correlation functions resolved in both space and time allows researchers to probe interactions between proteins on biologically relevant distance and time-scales, even though fluorescence localization methods typically require long times to assemble well-sampled reconstructed images. We describe an application of this approach to measure protein interactions in B cell receptor signaling and include sample analysis code for post-processing of imaging data. These methods are quantitative, sensitive, and broadly applicable to a range of signaling systems.
4
Citation1
0
Save