Abstract Spastic paraplegia type 3A (SPG3A) is the second most common form of hereditary spastic paraplegia (HSP). This autosomal-dominant-inherited motor disorder is caused by heterozygous variants in the ATL1 gene which usually presents as a pure childhood-onset spastic paraplegia. Affected individuals present muscle weakness and spasticity in the lower limbs, with symptom onset in the first decade of life. Individuals with SPG3A typically present a slow progression and remain ambulatory throughout their life. Here we report three unrelated individuals presenting with very-early-onset (before 7 months) complex, and severe HSP phenotypes (axial hypotonia, spastic quadriplegia, dystonia, seizures and intellectual disability). For 2 of the 3 patients, these phenotypes led to the initial diagnosis of cerebral palsy (CP). These individuals carried novel ATL1 pathogenic variants (a de novo ATL1 missense p.(Lys406Glu), a homozygous frameshift p.(Arg403Glufs*3) and a homozygous missense variant (p.Tyr367His)). The parents carrying the heterozygous frameshift and missense variants were asymptomatic. Through these observations, we increase the knowledge on genotype–phenotype correlations in SPG3A and offer additional proof for possible autosomal recessive forms of SPG3A, while raising awareness on these exceptional phenotypes. Their ability to mimic CP also implies that genetic testing should be considered for patients with atypical forms of CP, given the implications for genetic counseling.