YL
Yifang Liu
Author with expertise in Invertebrate Immunity and Host Defense Mechanisms
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(64% Open Access)
Cited by:
8
h-index:
22
/
i10-index:
38
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
32

A cell atlas of the fly kidney

Jun Xu et al.Sep 4, 2021
SUMMARY Like humans, insects rely on precise regulation of their internal environments to survive. The insect renal system consists of Malpighian tubules and nephrocytes that share similarities to the mammalian kidney. Studies of the Drosophila Malpighian tubules and nephrocytes have provided many insights into our understanding of the excretion of waste products, stem cell regeneration, protein reabsorption, and as human kidney disease models. Here, we analyzed single-nucleus RNA sequencing (snRNA-seq) data sets to characterize the cell types of the adult fly kidney. We identified 11 distinct clusters representing renal stem cells (RSCs), stellate cells (SCs), regionally specific principal cells (PCs), garland nephrocyte cells (GCs) and pericardial nephrocytes (PNs). Analyses of these clusters revealed many new interesting features. For example, we found a new, previously unrecognized cell cluster: lower segment PCs that express Esyt2 . In addition, we find that the SC marker genes RhoGEF64c , Frq2 , Prip and CG10939 regulate their unusual cell shape. Further, we identified transcription factors specific to each cluster and built a network of signaling pathways that are potentially involved in mediating cell-cell communication between Malpighian tubule cell types. Finally, cross-species analysis allowed us to match the fly kidney cell types to mouse kidney cell types and planarian protonephridia - knowledge that will help the generation of kidney disease models. To visualize this dataset, we provide a web-based resource for gene expression in single cells ( https://www.flyrnai.org/scRNA/kidney/ ). Altogether, our study provides a comprehensive resource for addressing gene function in the fly kidney and future disease studies.
32
Citation5
0
Save
1

DRscDB: A single-cell RNA-seq resource for data mining and data comparison across species

Yanhui Hu et al.Jan 31, 2021
Abstract With the advent of single-cell RNA sequencing (scRNA-seq) technologies, there has been a spike in studies involving scRNA-seq of several tissues across diverse species including Drosophila. Although a few databases exist for users to query genes of interest within the scRNA-seq studies, search tools that enable users to find orthologous genes and their cell type-specific expression patterns across species are limited. Here, we built a new search database, called DRscDB ( https://www.flyrnai.org/tools/single_cell/web/ ) to address this need. DRscDB serves as a comprehensive repository for published scRNA-seq datasets for Drosophila and the relevant datasets from human and other model organisms. DRscDB is based on manual curation of Drosophila scRNA-seq studies of various tissue types and their corresponding analogous tissues in vertebrates including zebrafish, mouse, and human. Of note, our search database provides most of the literature-derived marker genes, thus preserving the original analysis of the published scRNA-seq datasets. DRscDB serves as a web-based user interface that allows users to mine, utilize and compare gene expression data pertaining to scRNA-seq datasets from the published literature.
1
Citation2
0
Save
0

mRNA psi profiling using nanopore DRS reveals cell-type-specific pseudouridylation

Caroline McCormick et al.May 10, 2024
Abstract Pseudouridine (psi) is one of the most abundant human mRNA modifications generated from the isomerization of uridine via psi synthases, including TRUB1 and PUS7 . Nanopore direct RNA sequencing combined with our recent tool, Mod- p ID, enables psi mapping, transcriptome-wide, without chemical derivatization of the input RNA and/or conversion to cDNA. This method is sensitive for detecting changes in positional psi occupancies across cell types, which can inform our understanding of the impact on gene expression. We sequenced, mapped, and compared the positional psi occupancy across six immortalized human cell lines derived from diverse tissue types. We found that lung-derived cells have the highest proportion of psi, while liver-derived cells have the lowest. Further, among a list of highly conserved sites across cell types, most are TRUB1 substrates and fall within the coding sequence. We find that these conserved psi positions correspond to higher levels of protein expression than expected, suggesting translation regulation. Interestingly, we identify cell type-specific sites of psi modification in ubiquitously expressed genes. We validate these sites by ruling out single-nucleotide variants, analyzing current traces, and performing enzymatic knockdowns of psi synthases. Finally, we characterize sites with multiple psi modifications on the same transcript (hypermodification type II) and found that these can be conserved or cell type specific. Among these, we discovered examples of multiple psi modifications within the same k-mer for the first time and analyzed the effect on current distribution. Our data support the hypothesis that motif sequence and the presence of psi synthase are insufficient to drive modifications, that psi modifications contribute to regulating translation and that cell type-specific trans-acting factors play a major role in driving pseudouridylation.
0
Citation1
0
Save
3

Epithelial Ca2+waves triggered by enteric neurons heal the gut

Afroditi Petsakou et al.Aug 15, 2023
A fundamental and unresolved question in regenerative biology is how tissues return to homeostasis after injury. Answering this question is essential for understanding the etiology of chronic disorders such as inflammatory bowel diseases and cancer. We used the Drosophila midgut to investigate this question and discovered that during regeneration a subpopulation of cholinergic enteric neurons triggers Ca2+ currents among enterocytes to promote return of the epithelium to homeostasis. Specifically, we found that down-regulation of the cholinergic enzyme Acetylcholinesterase in the epithelium enables acetylcholine from defined enteric neurons, referred as ARCENs, to activate nicotinic receptors in enterocytes found near ARCEN-innervations. This activation triggers high Ca2+ influx that spreads in the epithelium through Inx2/Inx7 gap junctions promoting enterocyte maturation followed by reduction of proliferation and inflammation. Disrupting this process causes chronic injury consisting of ion imbalance, Yki activation and increase of inflammatory cytokines together with hyperplasia, reminiscent of inflammatory bowel diseases. Altogether, we found that during gut regeneration the conserved cholinergic pathway facilitates epithelial Ca2+ waves that heal the intestinal epithelium. Our findings demonstrate nerve- and bioelectric-dependent intestinal regeneration which advance the current understanding of how a tissue returns to its homeostatic state after injury and could ultimately help existing therapeutics.
0

Drosophila PDGF/VEGF signaling from muscles to hepatocyte-like cells protects against obesity

Arpan Ghosh et al.Dec 23, 2019
PDGF/VEGF ligands regulate a plethora of biological processes in multicellular organisms via autocrine, paracrine and endocrine mechanisms. Here, we investigated organ-specific roles of Drosophila PDGF/VEGF-like factors (Pvfs). We combine genetic approaches and single-nuclei sequencing to demonstrate that muscle-derived Pvf1 signals to the Drosophila hepatocyte-like cells/oenocytes to suppress lipid synthesis by activating the Pi3K/Akt1/mTOR signaling cascade in the oenocytes. Additionally, we show that this signaling axis regulates the rapid expansion of adipose tissue lipid stores observed in newly eclosed flies. Flies emerge after pupation with limited adipose tissue lipid stores and lipid levels are progressively restored via lipid synthesis. We find that pvf1 expression in the adult muscle increase rapidly during this stage and that muscle-to-oenocyte Pvf1 signaling inhibits restoration of adipose tissue lipid stores as the process reaches completion. Our findings provide the first evidence in a metazoan of a PDGF/VEGF ligand acting as a myokine that regulates systemic lipid homeostasis by activating mTOR in hepatocyte-like cells.Highlights
30

DNA-enhanced CuAAC ligand enables live-cell detection of intracellular biomolecules

Keqing Nian et al.Nov 10, 2022
Abstract Of the various conjugation strategies for cellular biomolecules, Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) is the preferred click chemistry approach due to its fast reaction rate and the commercial availability of a wide range of conjugates. While extracellular labeling of biomolecules using CuAAC has been widely adopted, intracellular labeling in live cells has been challenging; the high copper concentration required for CuAAC reaction can be toxic to biological systems. As a critical first step towards achieving intracellular labeling with CuAAC, an ultrasensitive CuAAC ligand is needed to reduce the required copper concentration while maintaining fast reaction kinetics. Here, we develop a new DNA oligomer-conjugated CuAAC ligand for click reaction biomolecular labeling. The DNA oligo attachment serves several purposes: 1. Increases availability of local copper atoms in proximity to the ligand, which drives up reaction rates, 2. Enables the ligation of azide tags with up to 10-fold lower copper concentrations as compared to commercially available CuAAC ligands, 3. Allows nucleic acid template-driven proximity ligation through the choice of the attached DNA sequence and 4. Allows the CuAAC ligand and copper to traverse the cell and nuclear membrane. We demonstrate that this ligand enhances the intracellular 5-ethynyl uridine labeling of nascent RNAs using fluorogenic dyes. We also show that our DNA-enhanced CuAAC ligand enables the ligation of fluorogenic dyes to label both sialylated glycans on the surface on live cells as well as the live-cell intracellular labeling of nascent RNAs. This new ligand advances our efforts toward the final goal of applying CuAAC for live-cell applications.
14

Paired aptamer capture and FISH detection of individual virions enables cell-free determination of infectious titer

Yifang Liu et al.Nov 13, 2022
Abstract Early detection of viruses can prevent the uncontrolled spread of viral infections. Determination of viral infectivity is also critical for determining the dosage of gene therapies, including vector-based vaccines, CAR T-cell therapies, and CRISPR therapeutics. In both cases, for viral pathogens and viral vector delivery vehicles, fast and accurate measurement of infectious titer is desirable. The most common methods for virus detection are antigen-based (rapid but not sensitive) and reverse transcription polymerase chain reaction (RT-PCR)-based (sensitive but not rapid). Current viral titer methods heavily rely on cultured cells, which introduces variability within labs and between labs. Thus, it is highly desirable to directly determine the infectious titer without using cells. Here, we report the development of a direct, fast, and sensitive assay for virus detection (dubbed rapid-aptamer FISH or raptamer FISH) and cell-free determination of infectious titers. Importantly, we demonstrate that the virions captured are “infectious,” thus serving as a more consistent proxy of infectious titer. This assay is unique because it first captures viruses bearing an intact coat protein using an aptamer, then detects genomes directly in individual virions using fluorescence in situ hybridization (FISH)– thus, it is selective for infectious particles (i.e., positive for coat protein and positive for genome).
22

Tumor Cytokine-Induced Hepatic Gluconeogenesis Contributes to Cancer Cachexia: Insights from Full Body Single Nuclei Sequencing

Ying Liu et al.May 18, 2023
Summary A primary cause of death in cancer patients is cachexia, a wasting syndrome attributed to tumor-induced metabolic dysregulation. Despite the major impact of cachexia on the treatment, quality of life, and survival of cancer patients, relatively little is known about the underlying pathogenic mechanisms. Hyperglycemia detected in glucose tolerance test is one of the earliest metabolic abnormalities observed in cancer patients; however, the pathogenesis by which tumors influence blood sugar levels remains poorly understood. Here, utilizing a Drosophila model, we demonstrate that the tumor secreted interleukin-like cytokine Upd3 induces fat body expression of Pepck1 and Pdk , two key regulatory enzymes of gluconeogenesis, contributing to hyperglycemia. Our data further indicate a conserved regulation of these genes by IL-6/JAK STAT signaling in mouse models. Importantly, in both fly and mouse cancer cachexia models, elevated gluconeogenesis gene levels are associated with poor prognosis. Altogether, our study uncovers a conserved role of Upd3/IL-6/JAK-STAT signaling in inducing tumor-associated hyperglycemia, which provides insights into the pathogenesis of IL-6 signaling in cancer cachexia. Graphical Abstract
0

Systematic comparison of sequencing-based spatial transcriptomic methods

Yun You et al.Jan 1, 2023
Recent advancements of sequencing-based spatial transcriptomics (sST) have catalyzed significant advancements by facilitating transcriptome-scale spatial gene expression measurement. Despite this progress, efforts to comprehensively benchmark different platforms are currently lacking. The extant variability across technologies and datasets poses challenges in formulating standardized evaluation metrics. In this study, we established a collection of reference tissues and regions characterized by well-defined histological architectures, and used them to generate data to compare six sST methods. We highlighted molecular diffusion as a variable parameter across different methods and tissues, significantly impacting the effective resolutions. Furthermore, we observed that spatial transcriptomic data demonstrate unique attributes beyond merely adding a spatial axis to single-cell data, including an enhanced ability to capture patterned rare cell states along with specific markers, albeit being influenced by multiple factors including sequencing depth and resolution. Our study assists biologists in sST platform selection, and helps foster a consensus on evaluation standards and establish a framework for future benchmarking efforts that can be used as a gold standard for the development and benchmarking of computational tools for spatial transcriptomic analysis.
Load More