JD
Jan Dernič
Author with expertise in Neuroscience and Genetics of Drosophila Melanogaster
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
1
h-index:
4
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Development of a genetically encoded sensor for probing endogenous nociceptin opioid peptide release

Xuehan Zhou et al.Jun 25, 2024
Abstract Nociceptin/orphanin-FQ (N/OFQ) is a recently appreciated critical opioid peptide with key regulatory functions in several central behavioral processes including motivation, stress, feeding, and sleep. The functional relevance of N/OFQ action in the mammalian brain remains unclear due to a lack of high-resolution approaches to detect this neuropeptide with appropriate spatial and temporal resolution. Here we develop and characterize NOPLight, a genetically encoded sensor that sensitively reports changes in endogenous N/OFQ release. We characterized the affinity, pharmacological profile, spectral properties, kinetics, ligand selectivity, and potential interaction with intracellular signal transducers of NOPLight in vitro. Its functionality was established in acute brain slices by exogeneous N/OFQ application and chemogenetic induction of endogenous N/OFQ release from PNOC neurons. In vivo studies with fibre photometry enabled direct recording of NOPLight binding to exogenous N/OFQ receptor ligands, as well as detection of endogenous N/OFQ release within the paranigral ventral tegmental area (pnVTA) during natural behaviors and chemogenetic activation of PNOC neurons. In summary, we show here that NOPLight can be used to detect N/OFQ opioid peptide signal dynamics in tissue and freely behaving animals.
0
Citation1
0
Save
1

Dissecting gating mechanisms of Orai calcium channel paralogs using constitutively active Orai mutants that mimic STIM1-gated state

Bartłomiej Augustynek et al.Oct 26, 2021
Abstract In humans, there are three paralogs of the Orai Ca 2+ channel, which lie at the heart of the store-operated calcium entry (SOCE) machinery. While the STIM-mediated gating mechanism of Orai channels is still being actively investigated, several artificial and natural variants are known to cause constitutive activity of the human Orai1 channel. Surprisingly, little is known about the conservation of the gating mechanism among the different human Orai paralogs and orthologs in other species. In our work, we show that the mutation corresponding to the activating mutation H134A in transmembrane helix 2 (TM2) of human Orai1 also activates Orai2 and Orai3, likely via a similar mechanism. However, this cross-paralog conservation does not apply to the “ANSGA” nexus mutations in TM4 of human Orai1 which mimic the STIM1-activated state of the channel. Investigating the mechanistic background of these differences, we identified two positions, H171 and F246 in human Orai1, which directly control the channel activation triggered by the “ANSGA” mutations in Orai1. Our results shed new light on these important gating checkpoints and show that the gating mechanism of the Orai channels is affected by multiple factors that are not necessarily evolutionarily conserved, such as the TM4-TM3 coupling.
1

Development of a genetically-encoded sensor for probing endogenous nociceptin opioid peptide release

Xuehan Zhou et al.May 26, 2023
Nociceptin/orphanin-FQ (N/OFQ) is a recently appreciated critical opioid peptide with key regulatory functions in several central behavioral processes including motivation, stress, feeding, and sleep. The functional relevance of N/OFQ action in the mammalian brain remains unclear due to a lack of high-resolution approaches to detect this neuropeptide with appropriate spatial and temporal resolution. Here we develop and characterize NOPLight, a genetically encoded sensor that sensitively reports changes in endogenous N/OFQ release. We characterized the affinity, pharmacological profile, spectral properties, kinetics, ligand selectivity, and potential interaction with intracellular signal transducers of NOPLight in vitro. Its functionality was established in acute brain slices by exogeneous N/OFQ application and chemogenetic induction of endogenous N/OFQ release from PNOC neurons. In vivo studies with fiber photometry enabled a direct recording of binding by N/OFQ receptor ligands, as well as the detection of natural or chemogenetically-evoked endogenous N/OFQ release within the paranigral ventral tegmental area (pnVTA). In summary, we show that NOPLight can be used to detect N/OFQ opioid peptide signal dynamics in tissue and freely-behaving animals.
0

Engineering a novel probiotic toolkit in Escherichia coli Nissle1917 for sensing and mitigating gut inflammatory diseases

Nathalie Weibel et al.Jun 17, 2024
Inflammatory Bowel Disease (IBD) is characterized by chronic intestinal inflammation with no cure and limited treatment options that often have systemic side effects. In this study, we developed a target-specific system to potentially treat IBD by engineering the probiotic bacterium Escherichia coli Nissle 1917 (EcN). Our modular system comprises three components: a transcription factor-based sensor (NorR) capable of detecting the inflammation biomarker nitric oxide, a type 1 hemolysin secretion system, and a therapeutic cargo consisting of a library of humanized anti-TNFα nanobodies. Despite a reduction in sensitivity, our system demonstrated a concentration-dependent response to nitric oxide, successfully secreting functional nanobodies with binding affinities comparable to the commonly used drug Adalimumab, as confirmed by ELISA and in vitro assays. This newly validated nanobody library expands EcN therapeutic capabilities. The adopted secretion system, also characterized for the first time in EcN, can be further adapted as a platform for screening and purifying proteins of interest. Additionally, we provided a mathematical framework to assess critical parameters in engineering probiotic systems, including the production and diffusion of relevant molecules, bacterial colonization rates, and particle interactions. This integrated approach expands the synthetic biology toolbox for EcN-based therapies, providing novel parts, circuits, and a model for tunable responses at inflammatory hotspots.