GW
Georg Wallmann
Author with expertise in Mass Spectrometry Techniques
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
22
h-index:
6
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Increasing the throughput of sensitive proteomics by plexDIA

Jason Derks et al.Nov 4, 2021
Current mass-spectrometry methods enable high-throughput proteomics of large sample amounts, but proteomics of low sample amounts remains limited in depth and throughput. To increase the throughput of sensitive proteomics, we developed an experimental and computational framework, plexDIA, for simultaneously multiplexing the analysis of both peptides and samples. Multiplexed analysis with plexDIA increases throughput multiplicatively with the number of labels without reducing proteome coverage or quantitative accuracy. By using 3-plex nonisobaric mass tags, plexDIA enables quantifying 3-fold more protein ratios among nanogram-level samples. Using 1 hour active gradients and first-generation Q Exactive, plexDIA quantified about 8,000 proteins in each sample of labeled 3-plex sets. plexDIA also increases data completeness, reducing missing data over 2-fold across samples. We applied plexDIA to quantify proteome dynamics during the cell division cycle in cells isolated based on their DNA content; plexDIA detected many classical cell cycle proteins and discovered new ones. When applied to single human cells, plexDIA quantified about 1,000 proteins per cell and achieved 98 % data completeness within a plexDIA set while using about 5 min of active chromatography per cell. These results establish a general framework for increasing the throughput of sensitive and quantitative protein analysis.
1
Citation16
0
Save
49

Synchro-PASEF allows precursor-specific fragment ion extraction and interference removal in data-independent acquisition

Patricia Skowronek et al.Nov 1, 2022
ABSTRACT Data-independent acquisition (DIA) methods have become increasingly popular in mass spectrometry (MS)-based proteomics because they enable continuous acquisition of fragment spectra for all precursors simultaneously. However, these advantages come with the challenge of correctly reconstructing the precursor-fragment relationships in these highly convoluted spectra for reliable identification and quantification. Here we introduce a scan mode for the combination of trapped ion mobility spectrometry (TIMS) with parallel accumulation – serial fragmentation (PASEF) that seamlessly and continuously follows the natural shape of the ion cloud in ion mobility and peptide precursor mass dimensions. Termed synchro-PASEF, it increases the detected fragment ion current several-fold at sub-second cycle times. Consecutive quadrupole selection windows move synchronously through the mass and ion mobility range, defining precursor-quadrupole relationships. In this process, the quadrupole slices through the peptide precursors, which separates fragment ion signals of each precursor into adjacent synchro-PASEF scans. This precisely defines precursor – fragment relationships in ion mobility and mass dimensions and effectively deconvolutes the DIA fragment space. Importantly, the partitioned parts of the fragment ion transitions provide a further dimension of specificity via a lock and key mechanism. This is also advantageous for quantification, where signals from interfering precursors in the DIA selection window do not affect all partitions of the fragment ion, allowing to retain only the specific parts for quantification. Overall, we establish the defining features of synchro-PASEF and explore its potential for proteomic analyses.
0

AlphaDIA enables End-to-End Transfer Learning for Feature-Free Proteomics

Georg Wallmann et al.Jun 2, 2024
Abstract Mass spectrometry (MS)-based proteomics continues to evolve rapidly, opening more and more application areas. The scale of data generated on novel instrumentation and acquisition strategies pose a challenge to bioinformatic analysis. Search engines need to make optimal use of the data for biological discoveries while remaining statistically rigorous, transparent and performant. Here we present alphaDIA, a modular open-source search framework for data independent acquisition (DIA) proteomics. We developed a feature-free identification algorithm particularly suited for detecting patterns in data produced by sensitive time-of-flight instruments. It naturally adapts to novel, more eTicient scan modes that are not yet accessible to previous algorithms. Rigorous benchmarking demonstrates competitive identification and quantification performance. While supporting empirical spectral libraries, we propose a new search strategy named end-to-end transfer learning using fully predicted libraries. This entails continuously optimizing a deep neural network for predicting machine and experiment specific properties, enabling the generic DIA analysis of any post-translational modification (PTM). AlphaDIA provides a high performance and accessible framework running locally or in the cloud, opening DIA analysis to the community.