EG
Ethan Goldberg
Author with expertise in Epilepsy and Seizures
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(64% Open Access)
Cited by:
579
h-index:
36
/
i10-index:
57
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Corticohippocampal circuit dysfunction in a mouse model of Dravet syndrome

Joanna Mattis et al.May 1, 2021
Abstract Dravet syndrome (DS) is a neurodevelopmental disorder defined by treatment-resistant epilepsy, autism spectrum disorder, and sudden death, due to pathogenic variants in SCN1A encoding the Nav1.1 sodium channel subunit. Convergent data suggest hippocampal dentate gyrus (DG) pathology. We found that optogenetic stimulation of entorhinal cortex was ictogenic in DS ( Scn1a +/- ) but not wild-type mice in vivo. Two-photon calcium imaging in brain slice demonstrated profound impairment in filtering of perforant path input by DG in young adult Scn1a +/- mice due to enhanced excitatory input to granule cells. Excitability of parvalbumin interneurons (PV-INs) was near-normal and selective activation of PV-INs rescued circuit impairments. This demonstrates developmental reorganization of hippocampal circuitry that can be modulated by recruitment of functional PV-INs, suggesting potential therapeutic approaches towards seizure modulation. The identified circuit abnormality mirrors that seen in models of chronic temporal lobe epilepsy, suggesting convergent mechanisms linking genetic and acquired causes of temporal lobe-onset seizures.
19

The SCN1A Philadelphia variant – a gain-of-function mutation causing an early-onset epileptic encephalopathy

Jérôme Clatot et al.Jul 1, 2022
Abstract Objective Loss-of-function variants in SCN1A cause Dravet Syndrome, the most common genetic developmental and epileptic encephalopathy (DEE). However, emerging evidence suggests separate entities of SCN1A -related disorders due to gain-of-function variants. Here, we aim to refine the clinical, genetic, and functional electrophysiological features of a recurrent p.R1636Q gain-of-function variant, identified in four individuals at a single center. Methods Individuals carrying the recurrent SCN1A p.R1636Q variant were identified through diagnostic testing. Whole-cell voltage-clamp electrophysiological recording in HEK-293T cells was performed to compare the properties of sodium channels containing wild-type Nav1.1 or Nav1.1-R1636Q along with both Navβ1 and Navβ2 subunits, including response to oxcarbazepine. To delineate differences to other SCN1A -related epilepsies, we analyzed electronic medical records. Results All four individuals had an early-onset DEE characterized by focal tonic seizures and additional seizure types starting in the first few weeks of life. Electrophysiological analysis showed a mixed gain-of-function effect with normal current density, a leftward (hyperpolarized) shift of steady-state inactivation, and slower inactivation kinetics leading to a prominent late sodium current ( I Na ). The observed functional changes closely paralleled effects of pathogenic variants in SCN3A and SCN8A at corresponding positions. Both wildtype and variant exhibited sensitivity to block by oxcarbazepine, partially correcting electrophysiological abnormalities of the SCN1A p.R1636Q variant. Clinically, a single individual responded to treatment with oxcarbazepine. Across 51 individuals with SCN1A -related epilepsies, those with the recurrent p.R1636Q variants had the earliest ages of onset. Interpretation The recurrent SCN1A p.R1636Q variant causes a clinical entity with a wider clinical spectrum than previously reported, characterized by ultra early-onset epilepsy and absence of prominent movement disorder. Functional consequences of this variant lead to mixed loss- and gain-of-function that is partially corrected by oxcarbazepine. The recurrent p.R1636Q variant represents one of the most common causes of early-onset SCN1A -related epilepsies with separate treatment and prognosis implications. Key Points Loss-of-function variants in SCN1A cause Dravet syndrome, but gain-of-function variants have an emerging clinical spectrum. The SCN1A p.R1636Q variant shows similar overall gain-of-function effects to identical missense variants in other voltage-gated sodium channels. Features of four unreported individuals with SCN1A p.R1636Q from a single center expand the SCN1A gain-of-function phenotype. Individuals with this variant are recognizable by their ultra early-onset seizures in contrast to Dravet syndrome.
19
Citation1
0
Save
3

High density SNP array and reanalysis of genome sequencing uncovers CNVs associated with neurodevelopmental disorders in KOLF2.1J iPSCs

Carolina Gracia-Diaz et al.Jun 27, 2023
The KOLF2.1J iPSC line was recently proposed as a reference iPSC to promote the standardization of research studies in the stem cell field. Due to overall good performance differentiating to neural cell lineages, high gene editing efficiency, and absence of genetic variants associated to neurological disorders KOLF2.1J iPSC line was particularly recommended for neurodegenerative disease modeling. However, our work uncovers that KOLF2.1J hPSCs carry heterozygous small copy number variants (CNVs) that cause DTNBP1, JARID2 and ASTN2 haploinsufficiencies, all of which are associated with neurological disorders. We further determine that these CNVs arose in vitro over the course of KOLF2.1J iPSC generation from a healthy donor-derived KOLF2 iPSC line and affect the expression of DNTBP1, JARID2 and ASTN2 proteins in KOLF2.1J iPSCs and neural progenitors. Therefore, our study suggests that KOLF2.1J iPSCs carry genetic variants that may be deleterious for neural cell lineages. This data is essential for a careful interpretation of neural cell studies derived from KOLF2.1J iPSCs and highlights the need for a catalogue of iPSC lines that includes a comprehensive genome characterization analysis.
0

Optimizing clinical interpretability of functional evidence in epilepsy-related ion channel variants

Shridhar Parthasarathy et al.May 14, 2024
Abstract Variants in genes encoding the voltage-gated ion channels are among the most common monogenic causes of epilepsy and neurodevelopmental disorders. Functional effects of a variant are increasingly important for diagnosis and therapeutic decisions. To incorporate knowledge regarding functional consequences in formal clinical variant interpretation, we developed an approach for evaluating multiple functional measurements within the Bayesian framework of the modified ACMG/AMP guidelines. We analyzed 216 functional assessments of 191 variants in SCN1A (n=74), SCN2A (n=66), SCN3A (n=18), and SCN8A (n=33). Of 20 commonly measured biophysical parameters, the most frequent drivers of overall functional consequence were persistent current (f=0.54), voltage dependence of activation (f=0.51), and voltage dependence of fast inactivation (f=0.40) for gain-of-function and peak current (f=0.87) for loss-of-function. By comparing measurements of 23 benign variants, we determined thresholds by which published data on these four parameters confer Strong evidence of variant pathogenicity (likelihood ratio > 18.7) under the ACMG/AMP rubric. Similarly, we delineated evidence weights for the most common epilepsy-related potassium channel gene, KCNQ2 , through reports of 80 pathogenic and 24 benign variants, accounting for heterozygous and homozygous experimental conditions. We collected the resulting categorization of functional data into FENICS, a biomedical ontology of 152 standardized terms for coherent annotation of electrophysiological results. Across 271 variants in SCN1A/2A/3A/8A and KCNQ2 , 1,731 annotations are available in ClinVar, facilitating use of this evidence in variant classification. In summary, we introduce and apply an ACMG/AMP-calibrated framework for electrophysiological studies in epilepsy-related channelopathies to delineate the impact of functional evidence on clinical variant interpretation.
1

Developmentally-regulated impairment of parvalbumin interneuron synaptic transmission in an experimental model of Dravet syndrome

Katsuyoshi Kaneko et al.Jul 28, 2021
ABSTRACT Dravet syndrome (DS) is a neurodevelopmental disorder defined by epilepsy, intellectual disability, and sudden death, due to heterozygous variants in SCN1A with loss of function of the sodium channel subunit Nav1.1. Nav1.1-expressing parvalbumin GABAergic interneurons (PV-INs) from pre-weanling Scn1a+/− mice show impaired action potential generation. A novel approach assessing PV-IN function in the same mice at two developmental time points showed that, at post-natal day (P) 16-21, spike generation was impaired all mice, deceased prior or surviving to P35. However, synaptic transmission was selectively dysfunctional in pre-weanling mice that did not survive. Spike generation in surviving mice normalized by P35, yet we again identified abnormalities in synaptic transmission. We conclude that combined dysfunction of PV-IN spike generation and synaptic transmission drives disease severity, while ongoing dysfunction of synaptic transmission contributes to chronic pathology. Modeling revealed that PV-IN axonal propagation is more sensitive to decreases in sodium conductance than spike generation.
Load More