Summary Many animals rely on optic flow for navigation, using differences in eye image velocity to detect deviations from their intended direction of travel. However, asymmetries in image velocity between the eyes are often overshadowed by strong, symmetric translational optic flow during navigation. Yet, the brain efficiently extracts these asymmetries for course control. While optic flow sensitive-neurons have been found in many animal species, far less is known about the postsynaptic circuits that support such robust optic flow processing. In the fly Drosophila melanogaster , a group of neurons called the horizontal system (HS) are involved in course control during high-speed translation. To understand how HS cells facilitate robust optic flow processing, we identified central networks that connect to HS cells using full brain electron microscopy datasets. These networks comprise three layers: convergent inputs from different, optic flow-sensitive cells, a middle layer with reciprocal, and lateral inhibitory interactions among different interneuron classes, and divergent output projecting to both the ventral nerve cord (equivalent to the vertebrate spinal cord), and to deeper regions of the fly brain. By combining two-photon optical imaging to monitor free calcium dynamics, manipulating GABA receptors and modeling, we found that lateral disinhibition between brain hemispheres enhance the selectivity to rotational visual flow at the output layer of the network. Moreover, asymmetric manipulations of interneurons and their descending outputs induce drifts during high-speed walking, confirming their contribution to steering control. Together, these findings highlight the importance of competitive disinhibition as a critical circuit mechanism for robust processing of optic flow, which likely influences course control and heading perception, both critical functions supporting navigation.