JG
Jeffrey Good
Author with expertise in Population Genetic Structure and Dynamics
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
35
(80% Open Access)
Cited by:
10,048
h-index:
44
/
i10-index:
81
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genetic history of an archaic hominin group from Denisova Cave in Siberia

David Reich et al.Dec 1, 2010
Using DNA extracted from a finger bone found in Denisova Cave in southern Siberia, we have sequenced the genome of an archaic hominin to about 1.9-fold coverage. This individual is from a group that shares a common origin with Neanderthals. This population was not involved in the putative gene flow from Neanderthals into Eurasians; however, the data suggest that it contributed 4–6% of its genetic material to the genomes of present-day Melanesians. We designate this hominin population ‘Denisovans’ and suggest that it may have been widespread in Asia during the Late Pleistocene epoch. A tooth found in Denisova Cave carries a mitochondrial genome highly similar to that of the finger bone. This tooth shares no derived morphological features with Neanderthals or modern humans, further indicating that Denisovans have an evolutionary history distinct from Neanderthals and modern humans. Anatomically modern humans were in Africa from some point after 200,000 years ago and reached Eurasia rather later. Meanwhile, archaic hominins — including the Neanderthals — had been in Eurasia from at least 230,000 years ago and disappear from the fossil record only about 30,000 years ago. The genome of a female archaic hominin from Denisova Cave in southern Siberia has now been sequenced from DNA extracted from a finger bone. The group to which this 'Denisovan' individual belonged shares a common origin with Neanderthals and, although it was not involved in the putative gene flow from Neanderthals into Eurasians, it contributed 4–6% of the genomes of present-day Melanesians. In addition, the morphology of a tooth with a mitochondrial genome very similar to that of the finger bone suggests that these hominins are evolutionarily distinct from both Neanderthals and modern humans. Using DNA from a finger bone, the genome of an archaic hominin from southern Siberia has been sequenced to about 1.9-fold coverage. The group to which this individual belonged shares a common origin with Neanderthals, and although it was not involved in the putative gene flow from Neanderthals into Eurasians, it contributed 4–6% of its genetic material to the genomes of present-day Melanesians. A tooth whose mitochondrial genome is very similar to that of the finger bone further suggests that these hominins are evolutionarily distinct from Neanderthals and modern humans.
0
Citation1,815
0
Save
0

The complete mitochondrial DNA genome of an unknown hominin from southern Siberia

Johannes Krause et al.Mar 23, 2010
Ancient mitochondrial DNA from a hominin individual who lived in the Altai Mountains in Southern Siberia between 48,000 and 30,000 years ago has been sequenced ( http://go.nature.com/sokd1F for News story). Comparative genomics suggest that this mtDNA derives from an out-of-Africa migration distinct from those that gave rise to Neanderthals and modern humans. The stratigraphy of the Denisova Cave where the bone — part of the fifth 'little finger' digit — was excavated in 2008, suggests that this hominin lived close geographically to Neanderthals and modern humans, and at the same time. Taken with the presence of Homo floresiensis in Indonesia about 17,000 years ago, this discovery suggests that multiple late Pleistocene hominin lineages coexisted for long periods of time in Eurasia. Ancient mitochondrial DNA from a hominin individual who lived in the mountains of Central Asia between 48,000–30,000 years ago has been sequenced. Comparative genomics suggest that this mitochondrial DNA derives from an out-of-Africa migration distinct from the ones that gave rise to Neanderthals and modern humans. It also seems that this hominin lived in close spatio-temporal proximity to Neanderthals and modern humans. With the exception of Neanderthals, from which DNA sequences of numerous individuals have now been determined1, the number and genetic relationships of other hominin lineages are largely unknown. Here we report a complete mitochondrial (mt) DNA sequence retrieved from a bone excavated in 2008 in Denisova Cave in the Altai Mountains in southern Siberia. It represents a hitherto unknown type of hominin mtDNA that shares a common ancestor with anatomically modern human and Neanderthal mtDNAs about 1.0 million years ago. This indicates that it derives from a hominin migration out of Africa distinct from that of the ancestors of Neanderthals and of modern humans. The stratigraphy of the cave where the bone was found suggests that the Denisova hominin lived close in time and space with Neanderthals as well as with modern humans2,3,4.
0
Citation732
0
Save
0

The bonobo genome compared with the chimpanzee and human genomes

Kay Prüfer et al.Jun 1, 2012
Sequencing of the bonobo genome shows that more than three per cent of the human genome is more closely related to either the bonobo genome or the chimpanzee genome than those genomes are to each other. The chimpanzee and the bonobo are our species' two closest living relatives. This paper reports the genome sequence of the bonobo, the last ape to be sequenced. Comparative genomic analyses reveal that more than 3% of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. The results shed light on the ancestry of the two ape species and might eventually help us to understand the genetic basis of phenotypes that humans share with one or the other ape species. Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours1,2,3,4, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.
0
Citation537
0
Save
0

Unlocking the vault: next‐generation museum population genomics

Ke Bi et al.Sep 12, 2013
Abstract Natural history museum collections provide unique resources for understanding how species respond to environmental change, including the abrupt, anthropogenic climate change of the past century. Ideally, researchers would conduct genome‐scale screening of museum specimens to explore the evolutionary consequences of environmental changes, but to date such analyses have been severely limited by the numerous challenges of working with the highly degraded DNA typical of historic samples. Here, we circumvent these challenges by using custom, multiplexed, exon capture to enrich and sequence ~11 000 exons (~4 Mb) from early 20th‐century museum skins. We used this approach to test for changes in genomic diversity accompanying a climate‐related range retraction in the alpine chipmunks ( T amias alpinus ) in the high Sierra Nevada area of California, USA . We developed robust bioinformatic pipelines that rigorously detect and filter out base misincorporations in DNA derived from skins, most of which likely resulted from postmortem damage. Furthermore, to accommodate genotyping uncertainties associated with low‐medium coverage data, we applied a recently developed probabilistic method to call single‐nucleotide polymorphisms and estimate allele frequencies and the joint site frequency spectrum. Our results show increased genetic subdivision following range retraction, but no change in overall genetic diversity at either nonsynonymous or synonymous sites. This case study showcases the advantages of integrating emerging genomic and statistical tools in museum collection‐based population genomic applications. Such technical advances greatly enhance the value of museum collections, even where a pre‐existing reference is lacking and points to a broad range of potential applications in evolutionary and conservation biology.
0
Citation362
0
Save
0

Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales

Ke Bi et al.Jan 1, 2012
To date, exon capture has largely been restricted to species with fully sequenced genomes, which has precluded its application to lineages that lack high quality genomic resources. We developed a novel strategy for designing array-based exon capture in chipmunks (Tamias) based on de novo transcriptome assemblies. We evaluated the performance of our approach across specimens from four chipmunk species.We selectively targeted 11,975 exons (~4 Mb) on custom capture arrays, and enriched over 99% of the targets in all libraries. The percentage of aligned reads was highly consistent (24.4-29.1%) across all specimens, including in multiplexing up to 20 barcoded individuals on a single array. Base coverage among specimens and within targets in each species library was uniform, and the performance of targets among independent exon captures was highly reproducible. There was no decrease in coverage among chipmunk species, which showed up to 1.5% sequence divergence in coding regions. We did observe a decline in capture performance of a subset of targets designed from a much more divergent ground squirrel genome (30 My), however, over 90% of the targets were also recovered. Final assemblies yielded over ten thousand orthologous loci (~3.6 Mb) with thousands of fixed and polymorphic SNPs among species identified.Our study demonstrates the potential of a transcriptome-enabled, multiplexed, exon capture method to create thousands of informative markers for population genomic and phylogenetic studies in non-model species across the tree of life.
0
Citation283
0
Save
Load More