MH
Mark Harnett
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(56% Open Access)
Cited by:
1,440
h-index:
15
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

An optimized fluorescent probe for visualizing glutamate neurotransmission

Jonathan Marvin et al.Jan 13, 2013
A single-wavelength genetically encoded sensor of extracellular glutamate is reported. The sensor—iGluSnFR—is bright and photostable under both one- and two-photon illumination and is shown to work for in vivo imaging in worms, zebrafish and mice. We describe an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) with signal-to-noise ratio and kinetics appropriate for in vivo imaging. We engineered iGluSnFR in vitro to maximize its fluorescence change, and we validated its utility for visualizing glutamate release by neurons and astrocytes in increasingly intact neurological systems. In hippocampal culture, iGluSnFR detected single field stimulus–evoked glutamate release events. In pyramidal neurons in acute brain slices, glutamate uncaging at single spines showed that iGluSnFR responds robustly and specifically to glutamate in situ, and responses correlate with voltage changes. In mouse retina, iGluSnFR-expressing neurons showed intact light-evoked excitatory currents, and the sensor revealed tonic glutamate signaling in response to light stimuli. In worms, glutamate signals preceded and predicted postsynaptic calcium transients. In zebrafish, iGluSnFR revealed spatial organization of direction-selective synaptic activity in the optic tectum. Finally, in mouse forelimb motor cortex, iGluSnFR expression in layer V pyramidal neurons revealed task-dependent single-spine activity during running.
1

Patch2MAP combines patch-clamp electrophysiology with super-resolution structural and protein imaging in identified single neurons without genetic modification

Dimitra Vardalaki et al.Mar 21, 2023
Recent developments in super-resolution microscopy have revolutionized the study of cell biology. However, dense tissues require exogenous protein expression for single cell morphological contrast. In the nervous system, many cell types and species of interest – particularly human – are not amenable to genetic modification and/or exhibit intricate anatomical specializations which make cellular delineation challenging. Here, we present a method for full morphological labeling of individual neurons from any species or cell type for subsequent cell-resolved protein analysis without genetic modification. Our method, which combines patch-clamp electrophysiology with epitope-preserving magnified analysis of proteome (eMAP), further allows for correlation of physiological properties with subcellular protein expression. We applied Patch2MAP to individual spiny synapses in human cortical pyramidal neurons and demonstrated that electrophysiological AMPA-to-NMDA receptor ratios correspond tightly to respective protein expression levels. Patch2MAP thus permits combined subcellular functional, anatomical, and proteomic analyses of any cell, opening new avenues for direct molecular investigation of the human brain in health and disease.
0

An animal-actuated rotational head-fixation system for 2-photon imaging during 2-d navigation

Jakob Voigts et al.Mar 1, 2018
Understanding how the biology of the brain gives rise to the computations that drive behavior requires high fidelity, large scale, and subcellular measurements of neural activity. 2-photon microscopy is the primary tool that satisfies these requirements, particularly for measurements during behavior. However, this technique requires rigid head-fixation, constraining the behavioral repertoire of experimental subjects. Increasingly, complex task paradigms are being used to investigate the neural substrates of complex behaviors, including navigation of complex environments, resolving uncertainty between multiple outcomes, integrating unreliable information over time, and/or building internal models of the world. In rodents, planning and decision making processes are often expressed via head and body motion. This produces a significant limitation for head-fixed two-photon imaging. We therefore developed a system that overcomes a major problem of head-fixation: the lack of rotational vestibular input. The system measures rotational strain exerted by mice on the head restraint, which consequently drives a motor, rotating the constraint system and dissipating the strain. This permits mice to rotate their heads in the azimuthal plane with negligible inertia and friction. This stable rotating head-fixation system allows mice to explore physical or virtual 2-D environments. To demonstrate the performance of our system, we conducted 2-photon GCaMP6f imaging in somas and dendrites of pyramidal neurons in mouse retrosplenial cortex. We show that the subcellular resolution of the system's 2-photon imaging is comparable to that of conventional head-fixed experiments. Additionally, this system allows the attachment of heavy instrumentation to the animal, making it possible to extend the approach to large-scale electrophysiology experiments in the future. Our method enables the use of state-of-the-art imaging techniques while animals perform more complex and naturalistic behaviors than currently possible, with broad potential applications in systems neuroscience.