Understanding how the biology of the brain gives rise to the computations that drive behavior requires high fidelity, large scale, and subcellular measurements of neural activity. 2-photon microscopy is the primary tool that satisfies these requirements, particularly for measurements during behavior. However, this technique requires rigid head-fixation, constraining the behavioral repertoire of experimental subjects. Increasingly, complex task paradigms are being used to investigate the neural substrates of complex behaviors, including navigation of complex environments, resolving uncertainty between multiple outcomes, integrating unreliable information over time, and/or building internal models of the world. In rodents, planning and decision making processes are often expressed via head and body motion. This produces a significant limitation for head-fixed two-photon imaging. We therefore developed a system that overcomes a major problem of head-fixation: the lack of rotational vestibular input. The system measures rotational strain exerted by mice on the head restraint, which consequently drives a motor, rotating the constraint system and dissipating the strain. This permits mice to rotate their heads in the azimuthal plane with negligible inertia and friction. This stable rotating head-fixation system allows mice to explore physical or virtual 2-D environments. To demonstrate the performance of our system, we conducted 2-photon GCaMP6f imaging in somas and dendrites of pyramidal neurons in mouse retrosplenial cortex. We show that the subcellular resolution of the system's 2-photon imaging is comparable to that of conventional head-fixed experiments. Additionally, this system allows the attachment of heavy instrumentation to the animal, making it possible to extend the approach to large-scale electrophysiology experiments in the future. Our method enables the use of state-of-the-art imaging techniques while animals perform more complex and naturalistic behaviors than currently possible, with broad potential applications in systems neuroscience.