MM
Milad Miladi
Author with expertise in Ribosome Structure and Translation Mechanisms
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
30
h-index:
12
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
33

The landscape of SARS-CoV-2 RNA modifications

Milad Miladi et al.Jul 18, 2020
Abstract In 2019 the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the first documented cases of severe lung disease COVID-19. Since then, SARS-CoV-2 has been spreading around the globe resulting in a severe pandemic with over 500.000 fatalities and large economical and social disruptions in human societies. Gaining knowledge on how SARS-Cov-2 interacts with its host cells and causes COVID-19 is crucial for the intervention of novel therapeutic strategies. SARS-CoV-2, like other coronaviruses, is a positive-strand RNA virus. The viral RNA is modified by RNA-modifying enzymes provided by the host cell. Direct RNA sequencing (DRS) using nanopores enables unbiased sensing of canonical and modified RNA bases of the viral transcripts. In this work, we used DRS to precisely annotate the open reading frames and the landscape of SARS-CoV-2 RNA modifications. We provide the first DRS data of SARS-CoV-2 in infected human lung epithelial cells. From sequencing three isolates, we derive a robust identification of SARS-CoV-2 modification sites within a physiologically relevant host cell type. A comparison of our data with the DRS data from a previous SARS-CoV-2 isolate, both raised in monkey renal cells, reveals consistent RNA modifications across the viral genome. Conservation of the RNA modification pattern during progression of the current pandemic suggests that this pattern is likely essential for the life cycle of SARS-CoV-2 and represents a possible target for drug interventions.
33
Citation19
0
Save
20

Freely accessible ready to use global infrastructure for SARS-CoV-2 monitoring

Wolfgang Maier et al.Mar 25, 2021
The COVID-19 pandemic is the first global health crisis to occur in the age of big genomic data.Although data generation capacity is well established and sufficiently standardized, analytical capacity is not. To establish analytical capacity it is necessary to pull together global computational resources and deliver the best open source tools and analysis workflows within a ready to use, universally accessible resource. Such a resource should not be controlled by a single research group, institution, or country. Instead it should be maintained by a community of users and developers who ensure that the system remains operational and populated with current tools. A community is also essential for facilitating the types of discourse needed to establish best analytical practices. Bringing together public computational research infrastructure from the USA, Europe, and Australia, we developed a distributed data analysis platform that accomplishes these goals. It is immediately accessible to anyone in the world and is designed for the analysis of rapidly growing collections of deep sequencing datasets. We demonstrate its utility by detecting allelic variants in high-quality existing SARS-CoV-2 sequencing datasets and by continuous reanalysis of COG-UK data. All workflows, data, and documentation is available at https://covid19.galaxyproject.org .
20
Citation9
0
Save
0

Empowering the annotation and discovery of structured RNAs with scalable and accessible integrative clustering

Milad Miladi et al.Feb 20, 2019
ABSTRACT RNA plays essential regulatory roles in all known forms of life. Clustering RNA sequences with common sequence and structure is an essential step towards studying RNA function. With the advent of high-throughput sequencing techniques, experimental and genomic data are expanding to complement the predictive methods. However, the existing methods do not effectively utilize and cope with the immense amount of data becoming available. Here we present GraphClust2, a comprehensive approach for scalable clustering of RNAs based on sequence and structural similarities. GraphClust2 provides an integrative solution by incorporating diverse types of experimental and genomic data in an accessible fashion via the Galaxy framework. We demonstrate that the tasks of clustering and annotation of structured RNAs can be considerably improved, through a scalable methodology that also supports structure probing data. Based on this, we further introduce an off-the-shelf procedure to identify locally conserved structure candidates in long RNAs. In this way, we suggest the presence and the sparsity of phylogenetically conserved local structures in some long non-coding RNAs. Furthermore, we demonstrate the advantage of a scalable clustering for discovering structured motifs under inherent and experimental biases and uncover prominent targets of the double-stranded RNA binding protein Roquin-1 that are evolutionary conserved.
0
Citation1
0
Save
1