GS
Georgia Squyres
Author with expertise in Bacterial Physiology and Genetics
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
546
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Processive movement ofStaphylococcus aureusessential septal peptidoglycan synthases is independent of FtsZ treadmilling and drives cell constriction

Simon Schäper et al.Jun 29, 2023
Abstract Bacterial cell division is mediated by the tubulin-homolog FtsZ, which recruits peptidoglycan (PG) synthesis enzymes to the division site. Septal PG synthases promote inward growth of the division septum, but the mechanisms governing the spatiotemporal regulation of these enzymes are poorly understood. Recent studies on various organisms have proposed different models for the relationship between the movement and activity of septum-specific PG synthases and FtsZ treadmilling. Here, we studied the movement dynamics of conserved cell division proteins relative to the rates of septum constriction and FtsZ treadmilling in the Gram-positive pathogen Staphylococcus aureus . The septal PG synthesis enzyme complex FtsW/PBP1 and its putative activator protein, DivIB, moved processively, around the division site, with the same velocity. Impairing FtsZ treadmilling did not affect FtsW and DivIB velocities or septum constriction rates. Contrarily, inhibition of PG synthesis slowed down or completely stopped both septum constriction and the directional movement of FtsW/PBP1 and DivIB. Our findings support a model for S. aureus in which a single population of processively moving FtsW/PBP1 remains associated with DivIB to drive cell constriction independently of treadmilling FtsZ filaments.
0
Citation4
0
Save
0

Treadmilling FtsZ polymers drive the directional movement of sPG-synthesis enzymes via a Brownian ratchet mechanism

Joshua McCausland et al.Nov 28, 2019
FtsZ, a highly conserved bacterial tubulin GTPase homolog, is a central component of the cell division machinery in nearly all walled bacteria. FtsZ polymerizes at the future division site and recruits > 30 proteins that assemble into a macromolecular complex termed divisome. Many of these divisome proteins are involved in septal cell wall peptidoglycan (sPG) synthesis. Recent studies found that FtsZ polymers undergo GTP hydrolysis-coupled treadmilling dynamics along the septum circumference of dividing cells, which drives processive movements of sPG synthesis enzymes. The mechanism of FtsZ treadmilling-driven directional transport of sPG enzymes and its precise role in bacterial cell division are unknown. Combining theoretical modeling and experimental testing, we show that FtsZ treadmilling drives the directional movement of sPG-synthesis enzymes via a Brownian ratchet mechanism, where the shrinking end of FtsZ polymers introduces an asymmetry to rectify diffusion of single enzyme molecules into persistent end-tracking movement. Furthermore, we show that processivity of this directional movement hinges on the balance between the enzyme's diffusion and FtsZ's treadmilling speed, which provides a mechanism to control the level of available enzymes for active sPG synthesis, explaining the distinct roles of FtsZ treadmilling in modulating cell wall constriction rate observed in different bacterial species.