WS
William Seeley
Author with expertise in Mechanisms of Alzheimer's Disease
University of California, San Francisco, University Memory and Aging Center, The University of Texas Health Science Center at Houston
+ 10 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
25
(52% Open Access)
Cited by:
24
h-index:
113
/
i10-index:
292
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
21

TDP-43 represses cryptic exon inclusion in FTD/ALS gene UNC13A

X. Rosa et al.Oct 24, 2023
+24
Y
M
X
A hallmark pathological feature of neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the depletion of RNA-binding protein TDP-43 from the nucleus of neurons in the brain and spinal cord. A major function of TDP-43 is as a repressor of cryptic exon inclusion during RNA splicing. Single nucleotide polymorphisms (SNPs) in UNC13A are among the strongest genome-wide association study (GWAS) hits associated with FTD/ALS in humans, but how those variants increase risk for disease is unknown. Here we show that TDP-43 represses a cryptic exon splicing event in UNC13A . Loss of TDP-43 from the nucleus in human brain, neuronal cell lines, and iPSC-derived motor neurons resulted in the inclusion of a cryptic exon in UNC13A mRNA and reduced UNC13A protein expression. Remarkably, the top variants associated with FTD/ALS risk in humans are located in the cryptic exon harboring intron itself and we show that they increase UNC13A cryptic exon splicing in the face of TDP-43 dysfunction. Together, our data provide a direct functional link between one of the strongest genetic risk factors for FTD/ALS ( UNC13A genetic variants) and loss of TDP-43 function.
21
Paper
Citation17
0
Save
45

Microglial NF-κB drives tau spreading and toxicity in a mouse model of tauopathy

Chao Wang et al.Oct 24, 2023
+13
L
L
C
Abstract Activation of microglia, the brain’s innate immune cells, is a prominent pathological feature in tauopathies, including Alzheimer’s disease. How microglia activation contributes to tau toxicity remains largely unknown. Here we show that nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, activated by tau, drives microglial-mediated tau propagation and toxicity. Constitutive activation of microglial NF-κB exacerbated, while inactivation diminished, tau seeding and spreading in PS19 mice, consistent with the observation that NF-κB activation accelerates processing of internalized tau fibrils in primary microglia. Remarkably, inhibition of microglial NF-κB specifically also rescued tau-mediated learning and memory deficits, and restored overall transcriptomic changes while increasing tau inclusions. On a single cell level, we discovered that tau-associated disease states in microglia were diminished by NF-κB inactivation and further transformed by constitutive NF-κB activation. Our study establishes a central role for microglial NF-κB signaling in mediating tau toxicity in tauopathy.
45
Citation3
0
Save
0

CSF Proteomics in Patients With Progressive Supranuclear Palsy

Amy Wise et al.Sep 12, 2024
+28
M
J
A
Identification of fluid biomarkers for progressive supranuclear palsy (PSP) is critical to enhance therapeutic development. We implemented unbiased DNA aptamer (SOMAmer) proteomics to identify novel CSF PSP biomarkers.
18

Radiogenomics of C9orf72 expansion carriers reveals global transposable element de-repression and enables prediction of thalamic atrophy and clinical impairment

Luke Bonham et al.Oct 24, 2023
+22
D
E
L
Abstract Hexanucleotide repeat expansion (HRE) within C9orf72 is the most common genetic cause of frontotemporal dementia (FTD). Thalamic atrophy occurs in both sporadic and familial FTD but is thought to distinctly affect HRE carriers. Separately, emerging evidence suggests widespread de-repression of transposable elements (TEs) in the brain in several neurodegenerative diseases, including C9orf72 HRE-mediated FTD (C9-FTD). Whether TE activation can be measured in peripheral blood and how the reduction in peripheral C9orf72 expression observed in HRE carriers relates to atrophy and clinical impairment remain unknown. We used the FreeSurfer pipeline and its extensions to assess the effects of C9orf72 HRE and clinical diagnosis ( n = 78) on atrophy of thalamic nuclei. We also generated a novel, whole-blood RNA-seq dataset to determine the relationships between peripheral C9orf72 expression, TE activation, thalamic atrophy, and clinical severity ( n = 114). We confirmed global thalamic atrophy and reduced C9orf72 expression in HRE carriers. Moreover, we identified disproportionate atrophy of the right mediodorsal lateral nucleus in HRE carriers and showed that C9orf72 expression associated with clinical severity, independent of thalamic atrophy. Strikingly, we found global peripheral activation of TEs, including the human endogenous LINE-1 element, L1HS. L1HS levels were associated with atrophy of multiple pulvinar nuclei, a thalamic region implicated in C9-FTD. Integration of peripheral transcriptomic and neuroimaging data from HRE carriers revealed atrophy of specific thalamic nuclei; demonstrated that C9orf72 levels relate to clinical severity; and identified marked de-repression of TEs, including L1HS , which predicted atrophy of FTD-relevant thalamic nuclei. Significance Statement Pathogenic repeat expansion in C9orf72 is the most frequent genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis (C9-FTD/ALS). The clinical, neuroimaging, and pathological features of C9-FTD/ALS are well-characterized, whereas the intersections of transcriptomic dysregulation and brain structure remain largely unexplored. Herein, we utilized a novel radiogenomic approach to examine the relationship between peripheral blood transcriptomics and thalamic atrophy, a neuroimaging feature disproportionately impacted in C9-FTD/ALS. We confirmed reduction of C9orf72 in blood and found broad dysregulation of transposable elements—genetic elements typically repressed in the human genome—in symptomatic C9orf72 expansion carriers, which associated with atrophy of thalamic nuclei relevant to FTD. C9orf72 expression was also associated with clinical severity, suggesting that peripheral C9orf72 levels capture disease-relevant information.
18
Paper
Citation1
0
Save
43

Progranulin deficiency results in reduced bis(monoacylglycero)phosphate (BMP) levels and gangliosidosis

Sebastian Boland et al.Oct 24, 2023
+15
Y
S
S
SUMMARY Homozygous mutations of granulin precursor ( GRN ) lead to neuronal ceroid lipofuscinosis 1 , a severe neurodevelopmental disease, in humans and neuroinflammation in mice 2 . Haploinsufficiency of GRN almost invariably causes frontotemporal dementia (FTD) 3,4 . The GRN locus produces progranulin (PGRN), a lysosomal precursor protein that is cleaved to granulin peptides 5,6 . Despite intensive investigation, the function of granulins and the reason why their absence causes neurodegeneration remain unclear. Here, we investigated PGRN function in lipid degradation, a major function of lysosomes. We show that PGRN-knockout human cells, PGRN-deficient murine brain, and frontal lobes of human brains from patients with GRN mutation-related FTD have increased levels of gangliosides, highly abundant sialic acid–containing glycosphingolipids (GSL) that are degraded in lysosomes. Probing how PGRN deficiency causes these changes, we found normal levels and activities of enzymes that catabolize gangliosides. However, levels of bis(monoacylglycero)phosphate (BMP), a lysosomal lipid required for ganglioside catabolism 7 , were markedly reduced in PGRN-deficient cells and patient brain tissues. These data indicate that granulins are required to maintain BMP levels, which regulate ganglioside catabolism, and that PGRN deficiency in lysosomes leads to gangliosidosis. This aberrant accumulation of gangliosides may contribute to neuroinflammation and neurodegeneration susceptibility.
0

Frontotemporal lobar degeneration targets brain regions linked to expression of recently evolved genes

Lorenzo Pasquini et al.Sep 11, 2024
+21
S
F
L
In frontotemporal lobar degeneration (FTLD), pathological protein aggregation in specific brain regions is associated with declines in human-specialized social-emotional and language functions. In most patients, disease protein aggregates contain either TDP-43 (FTLD-TDP) or tau (FTLD-tau). Here, we explored whether FTLD-associated regional degeneration patterns relate to regional gene expression of human accelerated regions (HARs), conserved sequences that have undergone positive selection during recent human evolution. To this end, we used structural neuroimaging from patients with FTLD and human brain regional transcriptomic data from controls to identify genes expressed in FTLD-targeted brain regions. We then integrated primate comparative genomic data to test our hypothesis that FTLD targets brain regions linked to expression levels of recently evolved genes. In addition, we asked whether genes whose expression correlates with FTLD atrophy are enriched for genes that undergo cryptic splicing when TDP-43 function is impaired. We found that FTLD-TDP and FTLD-tau subtypes target brain regions with overlapping and distinct gene expression correlates, highlighting many genes linked to neuromodulatory functions. FTLD atrophy-correlated genes were strongly enriched for HARs. Atrophy-correlated genes in FTLD-TDP showed greater overlap with TDP-43 cryptic splicing genes and genes with more numerous TDP-43 binding sites compared with atrophy-correlated genes in FTLD-tau. Cryptic splicing genes were enriched for HAR genes, and vice versa, but this effect was due to the confounding influence of gene length. Analyses performed at the individual-patient level revealed that the expression of HAR genes and cryptically spliced genes within putative regions of disease onset differed across FTLD-TDP subtypes.
0

The wake- and sleep-modulating neurons of the lateral hypothalamic area demonstrate a differential pattern of degeneration in Alzheimers disease

Abhijit Satpati et al.May 27, 2024
+16
A
F
A
Sleep-wake dysfunction is an early and common event in Alzheimer's disease (AD). The lateral hypothalamic area (LHA) regulates the sleep and wake cycle through wake-promoting orexinergic neurons (OrxN) and sleep-promoting melanin-concentrating hormone or MCHergic neurons (MCHN). These neurons share close anatomical proximity with functional reciprocity. This study investigated LHA OrxN and MCHN loss patterns in AD individuals. Understanding the degeneration pattern of these neurons will be instrumental in designing potential therapeutics to slow down the disease progression and remediate the sleep-wake dysfunction in AD.
0

Molecular characterization of selectively vulnerable neurons in Alzheimer’s Disease

Kun Leng et al.May 7, 2020
+14
R
E
K
Alzheimer’s disease (AD) is characterized by the selective vulnerability of specific neuronal populations, the molecular signatures of which are largely unknown. To identify and characterize selectively vulnerable neuronal populations, we used single-nucleus RNA sequencing to profile the caudal entorhinal cortex and the superior frontal gyrus – brain regions where neurofibrillary inclusions and neuronal loss occur early and late in AD, respectively – from individuals spanning the neuropathological progression of AD. We identified RORB as a marker of selectively vulnerable excitatory neurons in the entorhinal cortex, and subsequently validated their depletion and selective susceptibility to neurofibrillary inclusions during disease progression using quantitative neuropathological methods. We also discovered an astrocyte subpopulation, likely representing reactive astrocytes, characterized by decreased expression of genes involved in homeostatic functions. Our characterization of selectively vulnerable neurons in AD paves the way for future mechanistic studies of selective vulnerability and potential therapeutic strategies for enhancing neuronal resilience.
3

Overlapping brain networks interact in specific ways to create different brain activity patterns

Jesse Brown et al.Nov 20, 2021
W
L
A
J
A central goal of systems neuroscience is to determine the functional-anatomical basis of brain-wide activity dynamics. While brain activity patterns appear to be low-dimensional and guided by spatial gradients, the set of gradients remains provisional and their mode of interaction is unclear. Here we applied deep learning-based dimensionality reduction to task-free fMRI images to derive an intrinsic latent space of human brain activity. Each dimension represented a discrete, dynamically fluctuating spatial activity gradient. The principal dimension was a novel unipolar sensory-association gradient underlying the global signal. A small set of gradients appeared to underlie key functional connectomics phenomena. Different task activation patterns were generated by gradients adopting task-specific configurations. Dynamical systems modelling revealed that gradients interact via state-specific coupling parameters, allowing accurate forecasts and simulations of task-specific brain activity. Together, these findings indicate that a small set of dynamic, interacting gradients create the repertoire of possible brain activity states.
1

Progranulin inhibits phospholipase sPLA2-IIA to control neuroinflammation

Huan Du et al.Oct 24, 2023
+3
A
Y
H
Mutations in the granulin (GRN) gene, resulting in haploinsufficiency of the progranulin (PGRN) protein, are a leading cause of frontotemporal lobar degeneration (FTLD) and PGRN polymorphisms are associated with Alzheimer's disease (AD) and Parkinson's disease (PD). PGRN is a key regulator of microglia-mediated inflammation but the mechanism is still unknown. Here we report that PGRN interacts with sPLA2-IIA, a secreted phospholipase involved in inflammatory responses, to downregulate sPLA2-IIA activities and levels. sPLA2-IIA expression modifies PGRN deficiency phenotypes in mice and sPLA2-IIA inhibition rescues inflammation and lysosomal abnormalities in PGRN deficient mice. Furthermore, FTLD patients with GRN mutations show increased levels of sPLA2-IIA in astrocytes. Our data support sPLA2-IIA as a critical target for PGRN and a novel therapeutic target for FTLD-GRN.
Load More